MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmvth Structured version   Visualization version   GIF version

Theorem cmvth 23974
Description: Cauchy's Mean Value Theorem. If 𝐹, 𝐺 are real continuous functions on [𝐴, 𝐵] differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that 𝐹' (𝑥) / 𝐺' (𝑥) = (𝐹(𝐴) − 𝐹(𝐵)) / (𝐺(𝐴) − 𝐺(𝐵)). (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
cmvth.a (𝜑𝐴 ∈ ℝ)
cmvth.b (𝜑𝐵 ∈ ℝ)
cmvth.lt (𝜑𝐴 < 𝐵)
cmvth.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
cmvth.g (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
cmvth.df (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
cmvth.dg (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
Assertion
Ref Expression
cmvth (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem cmvth
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cmvth.a . . 3 (𝜑𝐴 ∈ ℝ)
2 cmvth.b . . 3 (𝜑𝐵 ∈ ℝ)
3 cmvth.lt . . 3 (𝜑𝐴 < 𝐵)
4 eqid 2771 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54subcn 22889 . . . 4 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
64mulcn 22890 . . . . 5 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
7 cmvth.f . . . . . . . . 9 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
8 cncff 22916 . . . . . . . . 9 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
97, 8syl 17 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
101rexrd 10295 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
112rexrd 10295 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
121, 2, 3ltled 10391 . . . . . . . . 9 (𝜑𝐴𝐵)
13 ubicc2 12496 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
1410, 11, 12, 13syl3anc 1476 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
159, 14ffvelrnd 6505 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
16 lbicc2 12495 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
1710, 11, 12, 16syl3anc 1476 . . . . . . . 8 (𝜑𝐴 ∈ (𝐴[,]𝐵))
189, 17ffvelrnd 6505 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
1915, 18resubcld 10664 . . . . . 6 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
20 iccssre 12460 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
211, 2, 20syl2anc 573 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
22 ax-resscn 10199 . . . . . . 7 ℝ ⊆ ℂ
2321, 22syl6ss 3764 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
2422a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
25 cncfmptc 22934 . . . . . 6 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐹𝐵) − (𝐹𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
2619, 23, 24, 25syl3anc 1476 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐹𝐵) − (𝐹𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
27 cmvth.g . . . . . . . 8 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ))
28 cncff 22916 . . . . . . . 8 (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐺:(𝐴[,]𝐵)⟶ℝ)
2927, 28syl 17 . . . . . . 7 (𝜑𝐺:(𝐴[,]𝐵)⟶ℝ)
3029feqmptd 6393 . . . . . 6 (𝜑𝐺 = (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧)))
3130, 27eqeltrrd 2851 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
32 remulcl 10227 . . . . 5 ((((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℝ)
334, 6, 26, 31, 22, 32cncfmpt2ss 22938 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
3429, 14ffvelrnd 6505 . . . . . . 7 (𝜑 → (𝐺𝐵) ∈ ℝ)
3529, 17ffvelrnd 6505 . . . . . . 7 (𝜑 → (𝐺𝐴) ∈ ℝ)
3634, 35resubcld 10664 . . . . . 6 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
37 cncfmptc 22934 . . . . . 6 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐺𝐵) − (𝐺𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
3836, 23, 24, 37syl3anc 1476 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((𝐺𝐵) − (𝐺𝐴))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
399feqmptd 6393 . . . . . 6 (𝜑𝐹 = (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧)))
4039, 7eqeltrrd 2851 . . . . 5 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
41 remulcl 10227 . . . . 5 ((((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ)
424, 6, 38, 40, 22, 41cncfmpt2ss 22938 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
43 resubcl 10551 . . . 4 (((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℝ ∧ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ) → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ℝ)
444, 5, 33, 42, 22, 43cncfmpt2ss 22938 . . 3 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4519recnd 10274 . . . . . . . . . 10 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
4645adantr 466 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
4729ffvelrnda 6504 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ ℝ)
4847recnd 10274 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐺𝑧) ∈ ℂ)
4946, 48mulcld 10266 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℂ)
5036adantr 466 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℝ)
519ffvelrnda 6504 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ ℝ)
5250, 51remulcld 10276 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℝ)
5352recnd 10274 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℂ)
5449, 53subcld 10598 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ ℂ)
554tgioo2 22826 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
56 iccntr 22844 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
571, 2, 56syl2anc 573 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
5824, 21, 54, 55, 4, 57dvmptntr 23954 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))))
59 reelprrecn 10234 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
6059a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
61 ioossicc 12464 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
6261sseli 3748 . . . . . . . 8 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ (𝐴[,]𝐵))
6362, 49sylan2 580 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) ∈ ℂ)
64 ovex 6827 . . . . . . . 8 (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) ∈ V
6564a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) ∈ V)
6662, 48sylan2 580 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
67 fvexd 6346 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ V)
6830oveq2d 6812 . . . . . . . . 9 (𝜑 → (ℝ D 𝐺) = (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧))))
69 dvf 23891 . . . . . . . . . . 11 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
70 cmvth.dg . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
7170feq2d 6170 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
7269, 71mpbii 223 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
7372feqmptd 6393 . . . . . . . . 9 (𝜑 → (ℝ D 𝐺) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑧)))
7424, 21, 48, 55, 4, 57dvmptntr 23954 . . . . . . . . 9 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐺𝑧))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑧))))
7568, 73, 743eqtr3rd 2814 . . . . . . . 8 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐺)‘𝑧)))
7660, 66, 67, 75, 45dvmptcmul 23947 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧))))
7762, 53sylan2 580 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) ∈ ℂ)
78 ovex 6827 . . . . . . . 8 (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)) ∈ V
7978a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)) ∈ V)
8051recnd 10274 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ ℂ)
8162, 80sylan2 580 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
82 fvexd 6346 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ V)
8339oveq2d 6812 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧))))
84 dvf 23891 . . . . . . . . . . 11 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
85 cmvth.df . . . . . . . . . . . 12 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8685feq2d 6170 . . . . . . . . . . 11 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
8784, 86mpbii 223 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
8887feqmptd 6393 . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑧)))
8924, 21, 80, 55, 4, 57dvmptntr 23954 . . . . . . . . 9 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑧))) = (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑧))))
9083, 88, 893eqtr3rd 2814 . . . . . . . 8 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((ℝ D 𝐹)‘𝑧)))
9136recnd 10274 . . . . . . . 8 (𝜑 → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ)
9260, 81, 82, 90, 91dvmptcmul 23947 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))
9360, 63, 65, 76, 77, 79, 92dvmptsub 23950 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
9458, 93eqtrd 2805 . . . . 5 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
9594dmeqd 5463 . . . 4 (𝜑 → dom (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = dom (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))))
96 ovex 6827 . . . . 5 ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))) ∈ V
97 eqid 2771 . . . . 5 (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))
9896, 97dmmpti 6162 . . . 4 dom (𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)))) = (𝐴(,)𝐵)
9995, 98syl6eq 2821 . . 3 (𝜑 → dom (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))) = (𝐴(,)𝐵))
10015recnd 10274 . . . . . . . 8 (𝜑 → (𝐹𝐵) ∈ ℂ)
10135recnd 10274 . . . . . . . 8 (𝜑 → (𝐺𝐴) ∈ ℂ)
102100, 101mulcld 10266 . . . . . . 7 (𝜑 → ((𝐹𝐵) · (𝐺𝐴)) ∈ ℂ)
10318recnd 10274 . . . . . . . 8 (𝜑 → (𝐹𝐴) ∈ ℂ)
10434recnd 10274 . . . . . . . 8 (𝜑 → (𝐺𝐵) ∈ ℂ)
105103, 104mulcld 10266 . . . . . . 7 (𝜑 → ((𝐹𝐴) · (𝐺𝐵)) ∈ ℂ)
106103, 101mulcld 10266 . . . . . . 7 (𝜑 → ((𝐹𝐴) · (𝐺𝐴)) ∈ ℂ)
107102, 105, 106nnncan2d 10633 . . . . . 6 (𝜑 → ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐵))))
108100, 104mulcld 10266 . . . . . . 7 (𝜑 → ((𝐹𝐵) · (𝐺𝐵)) ∈ ℂ)
109108, 105, 102nnncan1d 10632 . . . . . 6 (𝜑 → ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐵))))
110107, 109eqtr4d 2808 . . . . 5 (𝜑 → ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))) = ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))))
111100, 103, 101subdird 10693 . . . . . 6 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) = (((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))))
11291, 103mulcomd 10267 . . . . . . 7 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)) = ((𝐹𝐴) · ((𝐺𝐵) − (𝐺𝐴))))
113103, 104, 101subdid 10692 . . . . . . 7 (𝜑 → ((𝐹𝐴) · ((𝐺𝐵) − (𝐺𝐴))) = (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴))))
114112, 113eqtrd 2805 . . . . . 6 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)) = (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴))))
115111, 114oveq12d 6814 . . . . 5 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))) = ((((𝐹𝐵) · (𝐺𝐴)) − ((𝐹𝐴) · (𝐺𝐴))) − (((𝐹𝐴) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐴)))))
116100, 103, 104subdird 10693 . . . . . 6 (𝜑 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))))
11791, 100mulcomd 10267 . . . . . . 7 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)) = ((𝐹𝐵) · ((𝐺𝐵) − (𝐺𝐴))))
118100, 104, 101subdid 10692 . . . . . . 7 (𝜑 → ((𝐹𝐵) · ((𝐺𝐵) − (𝐺𝐴))) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴))))
119117, 118eqtrd 2805 . . . . . 6 (𝜑 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)) = (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴))))
120116, 119oveq12d 6814 . . . . 5 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))) = ((((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐴) · (𝐺𝐵))) − (((𝐹𝐵) · (𝐺𝐵)) − ((𝐹𝐵) · (𝐺𝐴)))))
121110, 115, 1203eqtr4d 2815 . . . 4 (𝜑 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
122 fveq2 6333 . . . . . . . 8 (𝑧 = 𝐴 → (𝐺𝑧) = (𝐺𝐴))
123122oveq2d 6812 . . . . . . 7 (𝑧 = 𝐴 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)))
124 fveq2 6333 . . . . . . . 8 (𝑧 = 𝐴 → (𝐹𝑧) = (𝐹𝐴))
125124oveq2d 6812 . . . . . . 7 (𝑧 = 𝐴 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴)))
126123, 125oveq12d 6814 . . . . . 6 (𝑧 = 𝐴 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
127 eqid 2771 . . . . . 6 (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))) = (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))
128 ovex 6827 . . . . . 6 ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) ∈ V
129126, 127, 128fvmpt3i 6431 . . . . 5 (𝐴 ∈ (𝐴[,]𝐵) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
13017, 129syl 17 . . . 4 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐴)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐴))))
131 fveq2 6333 . . . . . . . 8 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
132131oveq2d 6812 . . . . . . 7 (𝑧 = 𝐵 → (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)))
133 fveq2 6333 . . . . . . . 8 (𝑧 = 𝐵 → (𝐹𝑧) = (𝐹𝐵))
134133oveq2d 6812 . . . . . . 7 (𝑧 = 𝐵 → (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵)))
135132, 134oveq12d 6814 . . . . . 6 (𝑧 = 𝐵 → ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
136135, 127, 128fvmpt3i 6431 . . . . 5 (𝐵 ∈ (𝐴[,]𝐵) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
13714, 136syl 17 . . . 4 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵) = ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝐵)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝐵))))
138121, 130, 1373eqtr4d 2815 . . 3 (𝜑 → ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐴) = ((𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧))))‘𝐵))
1391, 2, 3, 44, 99, 138rolle 23973 . 2 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0)
14094fveq1d 6335 . . . . . 6 (𝜑 → ((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))‘𝑥))
141 fveq2 6333 . . . . . . . . 9 (𝑧 = 𝑥 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘𝑥))
142141oveq2d 6812 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)))
143 fveq2 6333 . . . . . . . . 9 (𝑧 = 𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘𝑥))
144143oveq2d 6812 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
145142, 144oveq12d 6814 . . . . . . 7 (𝑧 = 𝑥 → ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
146145, 97, 96fvmpt3i 6431 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑧))))‘𝑥) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
147140, 146sylan9eq 2825 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
148147eqeq1d 2773 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))) = 0))
14945adantr 466 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
15072ffvelrnda 6504 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑥) ∈ ℂ)
151149, 150mulcld 10266 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) ∈ ℂ)
15291adantr 466 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺𝐵) − (𝐺𝐴)) ∈ ℂ)
15387ffvelrnda 6504 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
154152, 153mulcld 10266 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)) ∈ ℂ)
155151, 154subeq0ad 10608 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) − (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))) = 0 ↔ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
156148, 155bitrd 268 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
157156rexbidva 3197 . 2 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ ((((𝐹𝐵) − (𝐹𝐴)) · (𝐺𝑧)) − (((𝐺𝐵) − (𝐺𝐴)) · (𝐹𝑧)))))‘𝑥) = 0 ↔ ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥))))
158139, 157mpbid 222 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D 𝐺)‘𝑥)) = (((𝐺𝐵) − (𝐺𝐴)) · ((ℝ D 𝐹)‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wrex 3062  Vcvv 3351  wss 3723  {cpr 4319   class class class wbr 4787  cmpt 4864  dom cdm 5250  ran crn 5251  wf 6026  cfv 6030  (class class class)co 6796  cc 10140  cr 10141  0cc0 10142   · cmul 10147  *cxr 10279   < clt 10280  cle 10281  cmin 10472  (,)cioo 12380  [,]cicc 12383  TopOpenctopn 16290  topGenctg 16306  fldccnfld 19961  intcnt 21042  cnccncf 22899   D cdv 23847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851
This theorem is referenced by:  mvth  23975  lhop1lem  23996
  Copyright terms: Public domain W3C validator