![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmptop | Structured version Visualization version GIF version |
Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
Ref | Expression |
---|---|
cmptop | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | iscmp 21239 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 = ∪ 𝑠))) |
3 | 2 | simplbi 475 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ∩ cin 3606 𝒫 cpw 4191 ∪ cuni 4468 Fincfn 7997 Topctop 20746 Compccmp 21237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-in 3614 df-ss 3621 df-pw 4193 df-uni 4469 df-cmp 21238 |
This theorem is referenced by: imacmp 21248 cmpcld 21253 fiuncmp 21255 cmpfii 21260 bwth 21261 locfincmp 21377 kgeni 21388 kgentopon 21389 kgencmp 21396 kgencmp2 21397 cmpkgen 21402 txcmplem1 21492 txcmp 21494 qtopcmp 21559 cmphaushmeo 21651 ptcmpfi 21664 fclscmpi 21880 alexsubALTlem1 21898 ptcmplem1 21903 ptcmpg 21908 evth 22805 evth2 22806 cmppcmp 30053 ordcmp 32571 poimirlem30 33569 heibor1lem 33738 cmpfiiin 37577 kelac1 37950 kelac2 37952 stoweidlem28 40563 stoweidlem50 40585 stoweidlem53 40588 stoweidlem57 40592 stoweidlem62 40597 |
Copyright terms: Public domain | W3C validator |