![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmpkgen | Structured version Visualization version GIF version |
Description: A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
cmpkgen | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | cmptop 21420 | . 2 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
3 | 2 | adantr 472 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝐽 ∈ Top) |
4 | 1 | topopn 20933 | . . . . 5 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
5 | 3, 4 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∪ 𝐽 ∈ 𝐽) |
6 | simpr 479 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝑥 ∈ ∪ 𝐽) | |
7 | 6 | snssd 4485 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → {𝑥} ⊆ ∪ 𝐽) |
8 | opnneiss 21144 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝐽 ∈ 𝐽 ∧ {𝑥} ⊆ ∪ 𝐽) → ∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥})) | |
9 | 3, 5, 7, 8 | syl3anc 1477 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥})) |
10 | 1 | restid 16316 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ↾t ∪ 𝐽) = 𝐽) |
11 | 3, 10 | syl 17 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → (𝐽 ↾t ∪ 𝐽) = 𝐽) |
12 | simpl 474 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → 𝐽 ∈ Comp) | |
13 | 11, 12 | eqeltrd 2839 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → (𝐽 ↾t ∪ 𝐽) ∈ Comp) |
14 | oveq2 6822 | . . . . 5 ⊢ (𝑘 = ∪ 𝐽 → (𝐽 ↾t 𝑘) = (𝐽 ↾t ∪ 𝐽)) | |
15 | 14 | eleq1d 2824 | . . . 4 ⊢ (𝑘 = ∪ 𝐽 → ((𝐽 ↾t 𝑘) ∈ Comp ↔ (𝐽 ↾t ∪ 𝐽) ∈ Comp)) |
16 | 15 | rspcev 3449 | . . 3 ⊢ ((∪ 𝐽 ∈ ((nei‘𝐽)‘{𝑥}) ∧ (𝐽 ↾t ∪ 𝐽) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
17 | 9, 13, 16 | syl2anc 696 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑥 ∈ ∪ 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) |
18 | 1, 2, 17 | llycmpkgen2 21575 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ⊆ wss 3715 {csn 4321 ∪ cuni 4588 ran crn 5267 ‘cfv 6049 (class class class)co 6814 ↾t crest 16303 Topctop 20920 neicnei 21123 Compccmp 21411 𝑘Genckgen 21558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-oadd 7734 df-er 7913 df-en 8124 df-fin 8127 df-fi 8484 df-rest 16305 df-topgen 16326 df-top 20921 df-topon 20938 df-bases 20972 df-ntr 21046 df-nei 21124 df-cmp 21412 df-kgen 21559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |