![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmpfii | Structured version Visualization version GIF version |
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
cmpfii | ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6350 | . . . . 5 ⊢ (Clsd‘𝐽) ∈ V | |
2 | 1 | elpw2 4965 | . . . 4 ⊢ (𝑋 ∈ 𝒫 (Clsd‘𝐽) ↔ 𝑋 ⊆ (Clsd‘𝐽)) |
3 | 2 | biimpri 218 | . . 3 ⊢ (𝑋 ⊆ (Clsd‘𝐽) → 𝑋 ∈ 𝒫 (Clsd‘𝐽)) |
4 | cmptop 21371 | . . . . 5 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) | |
5 | cmpfi 21384 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Comp → (𝐽 ∈ Comp ↔ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅))) |
7 | 6 | ibi 256 | . . 3 ⊢ (𝐽 ∈ Comp → ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅)) |
8 | fveq2 6340 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (fi‘𝑥) = (fi‘𝑋)) | |
9 | 8 | eleq2d 2813 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∅ ∈ (fi‘𝑥) ↔ ∅ ∈ (fi‘𝑋))) |
10 | 9 | notbid 307 | . . . . 5 ⊢ (𝑥 = 𝑋 → (¬ ∅ ∈ (fi‘𝑥) ↔ ¬ ∅ ∈ (fi‘𝑋))) |
11 | inteq 4618 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ∩ 𝑥 = ∩ 𝑋) | |
12 | 11 | neeq1d 2979 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∩ 𝑥 ≠ ∅ ↔ ∩ 𝑋 ≠ ∅)) |
13 | 10, 12 | imbi12d 333 | . . . 4 ⊢ (𝑥 = 𝑋 → ((¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅) ↔ (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅))) |
14 | 13 | rspcva 3435 | . . 3 ⊢ ((𝑋 ∈ 𝒫 (Clsd‘𝐽) ∧ ∀𝑥 ∈ 𝒫 (Clsd‘𝐽)(¬ ∅ ∈ (fi‘𝑥) → ∩ 𝑥 ≠ ∅)) → (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅)) |
15 | 3, 7, 14 | syl2anr 496 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽)) → (¬ ∅ ∈ (fi‘𝑋) → ∩ 𝑋 ≠ ∅)) |
16 | 15 | 3impia 1109 | 1 ⊢ ((𝐽 ∈ Comp ∧ 𝑋 ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘𝑋)) → ∩ 𝑋 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 ∀wral 3038 ⊆ wss 3703 ∅c0 4046 𝒫 cpw 4290 ∩ cint 4615 ‘cfv 6037 ficfi 8469 Topctop 20871 Clsdccld 20993 Compccmp 21362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-iin 4663 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7899 df-map 8013 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fi 8470 df-top 20872 df-cld 20996 df-cmp 21363 |
This theorem is referenced by: fclscmpi 22005 cmpfiiin 37731 |
Copyright terms: Public domain | W3C validator |