![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmnmnd | Structured version Visualization version GIF version |
Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2760 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | iscmn 18420 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
4 | 3 | simplbi 478 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 Mndcmnd 17515 CMndccmn 18413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6817 df-cmn 18415 |
This theorem is referenced by: cmn32 18431 cmn4 18432 cmn12 18433 mulgnn0di 18451 mulgmhm 18453 ghmcmn 18457 prdscmnd 18484 gsumres 18534 gsumcl2 18535 gsumf1o 18537 gsumsubmcl 18539 gsumadd 18543 gsumsplit 18548 gsummhm 18558 gsummulglem 18561 gsuminv 18566 gsumunsnfd 18576 gsumdifsnd 18580 gsum2d 18591 prdsgsum 18597 srgmnd 18729 gsumvsmul 19149 psrbagev1 19732 evlslem3 19736 evlslem1 19737 frlmgsum 20333 frlmup2 20360 islindf4 20399 mdetdiagid 20628 mdetrlin 20630 mdetrsca 20631 gsummatr01lem3 20685 gsummatr01 20687 chpscmat 20869 chp0mat 20873 chpidmat 20874 tmdgsum 22120 tmdgsum2 22121 tsms0 22166 tsmsmhm 22170 tsmsadd 22171 tgptsmscls 22174 tsmssplit 22176 tsmsxplem1 22177 tsmsxplem2 22178 imasdsf1olem 22399 lgseisenlem4 25323 xrge00 30016 xrge0omnd 30041 slmdmnd 30089 gsumle 30109 gsummptres 30114 xrge0iifmhm 30315 xrge0tmdOLD 30321 esum0 30441 esumsnf 30456 esumcocn 30472 gsumge0cl 41109 sge0tsms 41118 gsumpr 42667 gsumdifsndf 42672 |
Copyright terms: Public domain | W3C validator |