![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwnonrepclwwnon | Structured version Visualization version GIF version |
Description: If the initial vertex of a closed walk occurs another time in the walk, the walk starts with a closed walk on this vertex. See also the remarks in clwwnrepclwwn 27528. (Contributed by AV, 24-Apr-2022.) (Revised by AV, 10-May-2022.) |
Ref | Expression |
---|---|
clwwnonrepclwwnon | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 substr 〈0, (𝑁 − 2)〉) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1130 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → 𝑁 ∈ (ℤ≥‘3)) | |
2 | isclwwlknon 27264 | . . . . 5 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) | |
3 | 2 | simplbi 485 | . . . 4 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) |
4 | 3 | 3ad2ant2 1128 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) |
5 | simpr 471 | . . . . . . . 8 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊‘0) = 𝑋) | |
6 | 5 | eqcomd 2777 | . . . . . . 7 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → 𝑋 = (𝑊‘0)) |
7 | 2, 6 | sylbi 207 | . . . . . 6 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → 𝑋 = (𝑊‘0)) |
8 | 7 | eqeq2d 2781 | . . . . 5 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → ((𝑊‘(𝑁 − 2)) = 𝑋 ↔ (𝑊‘(𝑁 − 2)) = (𝑊‘0))) |
9 | 8 | biimpa 462 | . . . 4 ⊢ ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘(𝑁 − 2)) = (𝑊‘0)) |
10 | 9 | 3adant1 1124 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘(𝑁 − 2)) = (𝑊‘0)) |
11 | clwwnrepclwwn 27528 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 substr 〈0, (𝑁 − 2)〉) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) | |
12 | 1, 4, 10, 11 | syl3anc 1476 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 substr 〈0, (𝑁 − 2)〉) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) |
13 | 2clwwlklem 27527 | . . . . . 6 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 substr 〈0, (𝑁 − 2)〉)‘0) = (𝑊‘0)) | |
14 | 3, 13 | sylan 569 | . . . . 5 ⊢ ((𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 substr 〈0, (𝑁 − 2)〉)‘0) = (𝑊‘0)) |
15 | 14 | ancoms 455 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → ((𝑊 substr 〈0, (𝑁 − 2)〉)‘0) = (𝑊‘0)) |
16 | 15 | 3adant3 1126 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 substr 〈0, (𝑁 − 2)〉)‘0) = (𝑊‘0)) |
17 | 2 | simprbi 484 | . . . 4 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) → (𝑊‘0) = 𝑋) |
18 | 17 | 3ad2ant2 1128 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊‘0) = 𝑋) |
19 | 16, 18 | eqtrd 2805 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → ((𝑊 substr 〈0, (𝑁 − 2)〉)‘0) = 𝑋) |
20 | isclwwlknon 27264 | . 2 ⊢ ((𝑊 substr 〈0, (𝑁 − 2)〉) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 substr 〈0, (𝑁 − 2)〉) ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ ((𝑊 substr 〈0, (𝑁 − 2)〉)‘0) = 𝑋)) | |
21 | 12, 19, 20 | sylanbrc 572 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∧ (𝑊‘(𝑁 − 2)) = 𝑋) → (𝑊 substr 〈0, (𝑁 − 2)〉) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 〈cop 4322 ‘cfv 6031 (class class class)co 6793 0cc0 10138 − cmin 10468 2c2 11272 3c3 11273 ℤ≥cuz 11888 substr csubstr 13491 ClWWalksN cclwwlkn 27174 ClWWalksNOncclwwlknon 27259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-xnn0 11566 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-lsw 13496 df-substr 13499 df-wwlks 26958 df-wwlksn 26959 df-clwwlk 27132 df-clwwlkn 27176 df-clwwlknon 27260 |
This theorem is referenced by: 2clwwlk2clwwlk 27534 |
Copyright terms: Public domain | W3C validator |