![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwnisshclwwsn | Structured version Visualization version GIF version |
Description: Cyclically shifting a closed walk as word of fixed length results in a closed walk as word of the same length (in an undirected graph). (Contributed by Alexander van der Vekens, 10-Jun-2018.) (Revised by AV, 29-Apr-2021.) (Proof shortened by AV, 22-Mar-2022.) |
Ref | Expression |
---|---|
clwwnisshclwwsn | ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 cyclShift 𝑀) ∈ (𝑁 ClWWalksN 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlkclwwlkn 27185 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ (ClWWalks‘𝐺)) | |
2 | clwwlknlen 27187 | . . . . . . 7 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (♯‘𝑊) = 𝑁) | |
3 | 2 | eqcomd 2777 | . . . . . 6 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑊)) |
4 | 3 | oveq2d 6809 | . . . . 5 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (0...𝑁) = (0...(♯‘𝑊))) |
5 | 4 | eleq2d 2836 | . . . 4 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → (𝑀 ∈ (0...𝑁) ↔ 𝑀 ∈ (0...(♯‘𝑊)))) |
6 | 5 | biimpa 462 | . . 3 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ (0...(♯‘𝑊))) |
7 | clwwisshclwwsn 27166 | . . 3 ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑊))) → (𝑊 cyclShift 𝑀) ∈ (ClWWalks‘𝐺)) | |
8 | 1, 6, 7 | syl2an2r 664 | . 2 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 cyclShift 𝑀) ∈ (ClWWalks‘𝐺)) |
9 | eqid 2771 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
10 | 9 | clwwlknwrd 27189 | . . . 4 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ Word (Vtx‘𝐺)) |
11 | elfzelz 12549 | . . . 4 ⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ) | |
12 | cshwlen 13754 | . . . 4 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊)) | |
13 | 10, 11, 12 | syl2an 583 | . . 3 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑀 ∈ (0...𝑁)) → (♯‘(𝑊 cyclShift 𝑀)) = (♯‘𝑊)) |
14 | 2 | adantr 466 | . . 3 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑀 ∈ (0...𝑁)) → (♯‘𝑊) = 𝑁) |
15 | 13, 14 | eqtrd 2805 | . 2 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑀 ∈ (0...𝑁)) → (♯‘(𝑊 cyclShift 𝑀)) = 𝑁) |
16 | isclwwlkn 27180 | . 2 ⊢ ((𝑊 cyclShift 𝑀) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 cyclShift 𝑀) ∈ (ClWWalks‘𝐺) ∧ (♯‘(𝑊 cyclShift 𝑀)) = 𝑁)) | |
17 | 8, 15, 16 | sylanbrc 572 | 1 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 cyclShift 𝑀) ∈ (𝑁 ClWWalksN 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 0cc0 10138 ℤcz 11579 ...cfz 12533 ♯chash 13321 Word cword 13487 cyclShift ccsh 13743 Vtxcvtx 26095 ClWWalkscclwwlk 27131 ClWWalksN cclwwlkn 27174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-ico 12386 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-hash 13322 df-word 13495 df-lsw 13496 df-concat 13497 df-substr 13499 df-csh 13744 df-clwwlk 27132 df-clwwlkn 27176 |
This theorem is referenced by: clwwlknscsh 27220 |
Copyright terms: Public domain | W3C validator |