MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkvbij Structured version   Visualization version   GIF version

Theorem clwwlkvbij 27262
Description: There is a bijection between the set of closed walks of a fixed length 𝑁 on a fixed vertex 𝑋 represented by walks (as word) and the set of closed walks (as words) of the fixed length 𝑁 on the fixed vertex 𝑋. The difference between these two representations is that in the first case the fixed vertex is repeated at the end of the word, and in the second case it is not. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 3-Mar-2022.) (Proof shortened by AV, 28-Mar-2022.)
Hypothesis
Ref Expression
clwwlkvbij.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlkvbij ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Distinct variable groups:   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉   𝑓,𝑋,𝑤
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem clwwlkvbij
Dummy variables 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6841 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
21mptrabex 6652 . . . 4 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) ∈ V
32resex 5601 . . 3 ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) ∈ V
4 eqid 2760 . . . . . 6 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) = (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩))
5 eqid 2760 . . . . . . 7 {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} = {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}
65, 4clwwlkf1o 27180 . . . . . 6 (𝑁 ∈ ℕ → (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)):{𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}–1-1-onto→(𝑁 ClWWalksN 𝐺))
7 fveq1 6351 . . . . . . . . 9 (𝑦 = (𝑤 substr ⟨0, 𝑁⟩) → (𝑦‘0) = ((𝑤 substr ⟨0, 𝑁⟩)‘0))
87eqeq1d 2762 . . . . . . . 8 (𝑦 = (𝑤 substr ⟨0, 𝑁⟩) → ((𝑦‘0) = 𝑋 ↔ ((𝑤 substr ⟨0, 𝑁⟩)‘0) = 𝑋))
983ad2ant3 1130 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 substr ⟨0, 𝑁⟩)) → ((𝑦‘0) = 𝑋 ↔ ((𝑤 substr ⟨0, 𝑁⟩)‘0) = 𝑋))
10 fveq2 6352 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (lastS‘𝑥) = (lastS‘𝑤))
11 fveq1 6351 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥‘0) = (𝑤‘0))
1210, 11eqeq12d 2775 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((lastS‘𝑥) = (𝑥‘0) ↔ (lastS‘𝑤) = (𝑤‘0)))
1312elrab 3504 . . . . . . . . . . . 12 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↔ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)))
14 eqid 2760 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
15 eqid 2760 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = (Edg‘𝐺)
1614, 15wwlknp 26946 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
17 simpll 807 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑤 ∈ Word (Vtx‘𝐺))
18 nnz 11591 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
19 uzid 11894 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
20 peano2uz 11934 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
2118, 19, 203syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ𝑁))
22 elfz1end 12564 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
2322biimpi 206 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
24 fzss2 12574 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...(𝑁 + 1)))
2524sselda 3744 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 + 1) ∈ (ℤ𝑁) ∧ 𝑁 ∈ (1...𝑁)) → 𝑁 ∈ (1...(𝑁 + 1)))
2621, 23, 25syl2anc 696 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ (1...(𝑁 + 1)))
2726adantl 473 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (1...(𝑁 + 1)))
28 oveq2 6821 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑤) = (𝑁 + 1) → (1...(♯‘𝑤)) = (1...(𝑁 + 1)))
2928eleq2d 2825 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3029adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3130adantr 472 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3227, 31mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (1...(♯‘𝑤)))
3317, 32jca 555 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))))
3433ex 449 . . . . . . . . . . . . . . 15 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
35343adant3 1127 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3616, 35syl 17 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3736adantr 472 . . . . . . . . . . . 12 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3813, 37sylbi 207 . . . . . . . . . . 11 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3938impcom 445 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))))
40 swrd0fv0 13640 . . . . . . . . . 10 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))) → ((𝑤 substr ⟨0, 𝑁⟩)‘0) = (𝑤‘0))
4139, 40syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → ((𝑤 substr ⟨0, 𝑁⟩)‘0) = (𝑤‘0))
4241eqeq1d 2762 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → (((𝑤 substr ⟨0, 𝑁⟩)‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
43423adant3 1127 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 substr ⟨0, 𝑁⟩)) → (((𝑤 substr ⟨0, 𝑁⟩)‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
449, 43bitrd 268 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 substr ⟨0, 𝑁⟩)) → ((𝑦‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
454, 6, 44f1oresrab 6558 . . . . 5 (𝑁 ∈ ℕ → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
4645adantl 473 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
47 clwwlknon 27235 . . . . . 6 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋}
4847a1i 11 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
4948f1oeq3d 6295 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋}))
5046, 49mpbird 247 . . 3 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
51 f1oeq1 6288 . . . 4 (𝑓 = ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) → (𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
5251spcegv 3434 . . 3 (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) ∈ V → (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 substr ⟨0, 𝑁⟩)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) → ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
533, 50, 52mpsyl 68 . 2 ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
54 df-rab 3059 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∣ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))}
55 anass 684 . . . . . . 7 (((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)))
5655bicomi 214 . . . . . 6 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)) ↔ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋))
5756abbii 2877 . . . . 5 {𝑤 ∣ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))} = {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)}
5813bicomi 214 . . . . . . . 8 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ↔ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)})
5958anbi1i 733 . . . . . . 7 (((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋))
6059abbii 2877 . . . . . 6 {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∣ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋)}
61 df-rab 3059 . . . . . 6 {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋} = {𝑤 ∣ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋)}
6260, 61eqtr4i 2785 . . . . 5 {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}
6354, 57, 623eqtri 2786 . . . 4 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}
64 f1oeq2 6289 . . . 4 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋} → (𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6563, 64mp1i 13 . . 3 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6665exbidv 1999 . 2 ((𝑋𝑉𝑁 ∈ ℕ) → (∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6753, 66mpbird 247 1 ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2139  {cab 2746  wral 3050  {crab 3054  Vcvv 3340  {cpr 4323  cop 4327  cmpt 4881  cres 5268  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6813  0cc0 10128  1c1 10129   + caddc 10131  cn 11212  cz 11569  cuz 11879  ...cfz 12519  ..^cfzo 12659  chash 13311  Word cword 13477  lastSclsw 13478   substr csubstr 13481  Vtxcvtx 26073  Edgcedg 26138   WWalksN cwwlksn 26929   ClWWalksN cclwwlkn 27147  ClWWalksNOncclwwlknon 27232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-lsw 13486  df-concat 13487  df-s1 13488  df-substr 13489  df-wwlks 26933  df-wwlksn 26934  df-clwwlk 27105  df-clwwlkn 27149  df-clwwlknon 27233
This theorem is referenced by:  numclwwlkqhash  27536
  Copyright terms: Public domain W3C validator