![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknwwlksnb | Structured version Visualization version GIF version |
Description: A word over vertices represents a closed walk of a fixed length 𝑁 greater than zero iff the word concatenated with its first symbol represents a walk of length 𝑁. This theorem would not hold for 𝑁 = 0 and 𝑊 = ∅, because (𝑊 ++ 〈“(𝑊‘0)”〉) = 〈“∅”〉 ∈ (0 WWalksN 𝐺) could be true, but not 𝑊 ∈ (0 ClWWalksN 𝐺) ↔ ∅ ∈ ∅. (Contributed by AV, 4-Mar-2022.) (Proof shortened by AV, 22-Mar-2022.) |
Ref | Expression |
---|---|
clwwlkwwlksb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
clwwlknwwlksnb | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 11506 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | ccatws1lenp1b 13602 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁)) | |
3 | 1, 2 | sylan2 580 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁)) |
4 | 3 | anbi2d 614 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
5 | simpl 468 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑊 ∈ Word 𝑉) | |
6 | eleq1 2838 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) = 𝑁 → ((♯‘𝑊) ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
7 | len0nnbi 13537 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ∈ ℕ)) | |
8 | 7 | biimprcd 240 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ → (𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅)) |
9 | 6, 8 | syl6bir 244 | . . . . . . . . 9 ⊢ ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → (𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅))) |
10 | 9 | com13 88 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℕ → ((♯‘𝑊) = 𝑁 → 𝑊 ≠ ∅))) |
11 | 10 | imp31 404 | . . . . . . 7 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → 𝑊 ≠ ∅) |
12 | clwwlkwwlksb.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
13 | 12 | clwwlkwwlksb 27211 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺))) |
14 | 5, 11, 13 | syl2an2r 664 | . . . . . 6 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺))) |
15 | 14 | bicomd 213 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) ∧ (♯‘𝑊) = 𝑁) → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺))) |
16 | 15 | ex 397 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((♯‘𝑊) = 𝑁 → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ↔ 𝑊 ∈ (ClWWalks‘𝐺)))) |
17 | 16 | pm5.32rd 567 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
18 | 4, 17 | bitrd 268 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
19 | 1 | adantl 467 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
20 | iswwlksn 26966 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)))) | |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑊 ++ 〈“(𝑊‘0)”〉)) = (𝑁 + 1)))) |
22 | isclwwlkn 27180 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁)) | |
23 | 22 | a1i 11 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))) |
24 | 18, 21, 23 | 3bitr4rd 301 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ++ 〈“(𝑊‘0)”〉) ∈ (𝑁 WWalksN 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∅c0 4063 ‘cfv 6030 (class class class)co 6796 0cc0 10142 1c1 10143 + caddc 10145 ℕcn 11226 ℕ0cn0 11499 ♯chash 13321 Word cword 13487 ++ cconcat 13489 〈“cs1 13490 Vtxcvtx 26095 WWalkscwwlks 26953 WWalksN cwwlksn 26954 ClWWalkscclwwlk 27131 ClWWalksN cclwwlkn 27174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-n0 11500 df-xnn0 11571 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-lsw 13496 df-concat 13497 df-s1 13498 df-wwlks 26958 df-wwlksn 26959 df-clwwlk 27132 df-clwwlkn 27176 |
This theorem is referenced by: clwwlknonwwlknonb 27281 clwwlknonwwlknonbOLD 27282 |
Copyright terms: Public domain | W3C validator |