Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknunOLD Structured version   Visualization version   GIF version

Theorem clwwlknunOLD 27265
 Description: Obsolete version of clwwlknun 27261 as of 3-Mar-2022. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
clwwlknunOLD.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlknunOLD ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉   𝑥,𝑤,𝐺   𝑤,𝑁
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem clwwlknunOLD
Dummy variables 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4676 . . 3 (𝑦 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ ∃𝑥𝑉 𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥})
2 fveq1 6351 . . . . . . 7 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
32eqeq1d 2762 . . . . . 6 (𝑤 = 𝑦 → ((𝑤‘0) = 𝑥 ↔ (𝑦‘0) = 𝑥))
43elrab 3504 . . . . 5 (𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
54rexbii 3179 . . . 4 (∃𝑥𝑉 𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
6 simpl 474 . . . . . . 7 ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))
76a1i 11 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
87rexlimdvw 3172 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
9 clwwlknunOLD.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
10 eqid 2760 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
119, 10clwwlknp 27165 . . . . . . . 8 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)))
1211anim2i 594 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))))
1310, 9usgrpredgv 26288 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → ((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉))
1413ex 449 . . . . . . . . . . . . . 14 (𝐺 ∈ USGraph → ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → ((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉)))
15 simpr 479 . . . . . . . . . . . . . 14 (((lastS‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉) → (𝑦‘0) ∈ 𝑉)
1614, 15syl6 35 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → (𝑦‘0) ∈ 𝑉))
1716adantr 472 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → (𝑦‘0) ∈ 𝑉))
1817com12 32 . . . . . . . . . . 11 ({(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑦‘0) ∈ 𝑉))
19183ad2ant3 1130 . . . . . . . . . 10 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑦‘0) ∈ 𝑉))
2019impcom 445 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦‘0) ∈ 𝑉)
21 simpr 479 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → 𝑥 = (𝑦‘0))
2221eqcomd 2766 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦‘0) = 𝑥)
2322biantrud 529 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
2423bicomd 213 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
2520, 24rspcedv 3453 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
2625adantld 484 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
2712, 26mpcom 38 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
2827ex 449 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
298, 28impbid 202 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
305, 29syl5bb 272 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (∃𝑥𝑉 𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
311, 30syl5rbb 273 . 2 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑦 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}))
3231eqrdv 2758 1 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  {crab 3054  {cpr 4323  ∪ ciun 4672  ‘cfv 6049  (class class class)co 6813  0cc0 10128  1c1 10129   + caddc 10131   − cmin 10458  ℕ0cn0 11484  ..^cfzo 12659  ♯chash 13311  Word cword 13477  lastSclsw 13478  Vtxcvtx 26073  Edgcedg 26138  USGraphcusgr 26243   ClWWalksN cclwwlkn 27147 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-edg 26139  df-umgr 26177  df-usgr 26245  df-clwwlk 27105  df-clwwlkn 27149 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator