Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknscsh Structured version   Visualization version   GIF version

Theorem clwwlknscsh 27193
 Description: The set of cyclical shifts of a word representing a closed walk is the set of closed walks represented by cyclical shifts of a word. (Contributed by Alexander van der Vekens, 15-Jun-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
clwwlknscsh ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
Distinct variable groups:   𝑛,𝐺,𝑦   𝑛,𝑁,𝑦   𝑛,𝑊,𝑦

Proof of Theorem clwwlknscsh
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2764 . . . 4 (𝑦 = 𝑥 → (𝑦 = (𝑊 cyclShift 𝑛) ↔ 𝑥 = (𝑊 cyclShift 𝑛)))
21rexbidv 3190 . . 3 (𝑦 = 𝑥 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)))
32cbvrabv 3339 . 2 {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)}
4 eqid 2760 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
54clwwlknwrd 27162 . . . . . . 7 (𝑤 ∈ (𝑁 ClWWalksN 𝐺) → 𝑤 ∈ Word (Vtx‘𝐺))
65ad2antrl 766 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → 𝑤 ∈ Word (Vtx‘𝐺))
7 simprr 813 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))
86, 7jca 555 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
9 simprr 813 . . . . . . . . . . . . 13 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) → 𝑊 ∈ (𝑁 ClWWalksN 𝐺))
10 simpllr 817 . . . . . . . . . . . . 13 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → 𝑛 ∈ (0...𝑁))
11 clwwnisshclwwsn 27190 . . . . . . . . . . . . 13 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ 𝑛 ∈ (0...𝑁)) → (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺))
129, 10, 11syl2an2r 911 . . . . . . . . . . . 12 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺))
13 eleq1 2827 . . . . . . . . . . . . 13 (𝑤 = (𝑊 cyclShift 𝑛) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺)))
1413adantl 473 . . . . . . . . . . . 12 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 cyclShift 𝑛) ∈ (𝑁 ClWWalksN 𝐺)))
1512, 14mpbird 247 . . . . . . . . . . 11 ((((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) ∧ (𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺))) ∧ 𝑤 = (𝑊 cyclShift 𝑛)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
1615exp31 631 . . . . . . . . . 10 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 = (𝑊 cyclShift 𝑛) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1716com23 86 . . . . . . . . 9 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ (0...𝑁)) → (𝑤 = (𝑊 cyclShift 𝑛) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1817rexlimdva 3169 . . . . . . . 8 (𝑤 ∈ Word (Vtx‘𝐺) → (∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))))
1918imp 444 . . . . . . 7 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) → ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺)))
2019impcom 445 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → 𝑤 ∈ (𝑁 ClWWalksN 𝐺))
21 simprr 813 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))
2220, 21jca 555 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) ∧ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))) → (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
238, 22impbida 913 . . . 4 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛))))
24 eqeq1 2764 . . . . . 6 (𝑥 = 𝑤 → (𝑥 = (𝑊 cyclShift 𝑛) ↔ 𝑤 = (𝑊 cyclShift 𝑛)))
2524rexbidv 3190 . . . . 5 (𝑥 = 𝑤 → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
2625elrab 3504 . . . 4 (𝑤 ∈ {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} ↔ (𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
27 eqeq1 2764 . . . . . 6 (𝑦 = 𝑤 → (𝑦 = (𝑊 cyclShift 𝑛) ↔ 𝑤 = (𝑊 cyclShift 𝑛)))
2827rexbidv 3190 . . . . 5 (𝑦 = 𝑤 → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
2928elrab 3504 . . . 4 (𝑤 ∈ {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ∃𝑛 ∈ (0...𝑁)𝑤 = (𝑊 cyclShift 𝑛)))
3023, 26, 293bitr4g 303 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑤 ∈ {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} ↔ 𝑤 ∈ {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)}))
3130eqrdv 2758 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑥 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
323, 31syl5eq 2806 1 ((𝑁 ∈ ℕ0𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑊 cyclShift 𝑛)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∃wrex 3051  {crab 3054  ‘cfv 6049  (class class class)co 6813  0cc0 10128  ℕ0cn0 11484  ...cfz 12519  Word cword 13477   cyclShift ccsh 13734  Vtxcvtx 26073   ClWWalksN cclwwlkn 27147 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-ico 12374  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-hash 13312  df-word 13485  df-lsw 13486  df-concat 13487  df-substr 13489  df-csh 13735  df-clwwlk 27105  df-clwwlkn 27149 This theorem is referenced by:  hashecclwwlkn1  27208  umgrhashecclwwlk  27209
 Copyright terms: Public domain W3C validator