MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonmpt2 Structured version   Visualization version   GIF version

Theorem clwwlknonmpt2 27255
Description: (ClWWalksNOn‘𝐺) is an operator mapping a vertex 𝑣 and a nonnegative integer 𝑛 to the set of closed walks on 𝑣 of length 𝑛 as words over the set of vertices in a graph 𝐺. (Contributed by AV, 25-Feb-2022.)
Assertion
Ref Expression
clwwlknonmpt2 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
Distinct variable group:   𝑛,𝐺,𝑣,𝑤

Proof of Theorem clwwlknonmpt2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6353 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
2 eqidd 2761 . . . 4 (𝑔 = 𝐺 → ℕ0 = ℕ0)
3 oveq2 6822 . . . . 5 (𝑔 = 𝐺 → (𝑛 ClWWalksN 𝑔) = (𝑛 ClWWalksN 𝐺))
43rabeqdv 3334 . . . 4 (𝑔 = 𝐺 → {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
51, 2, 4mpt2eq123dv 6883 . . 3 (𝑔 = 𝐺 → (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣}) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
6 df-clwwlknon 27254 . . 3 ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣}))
7 fvex 6363 . . . 4 (Vtx‘𝐺) ∈ V
8 nn0ex 11510 . . . 4 0 ∈ V
97, 8mpt2ex 7416 . . 3 (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) ∈ V
105, 6, 9fvmpt 6445 . 2 (𝐺 ∈ V → (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
11 fvprc 6347 . . 3 𝐺 ∈ V → (ClWWalksNOn‘𝐺) = ∅)
12 fvprc 6347 . . . . 5 𝐺 ∈ V → (Vtx‘𝐺) = ∅)
13 eqidd 2761 . . . . 5 𝐺 ∈ V → ℕ0 = ℕ0)
14 eqidd 2761 . . . . 5 𝐺 ∈ V → {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
1512, 13, 14mpt2eq123dv 6883 . . . 4 𝐺 ∈ V → (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (𝑣 ∈ ∅, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
16 mpt20 6891 . . . 4 (𝑣 ∈ ∅, 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = ∅
1715, 16syl6req 2811 . . 3 𝐺 ∈ V → ∅ = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
1811, 17eqtrd 2794 . 2 𝐺 ∈ V → (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
1910, 18pm2.61i 176 1 (ClWWalksNOn‘𝐺) = (𝑣 ∈ (Vtx‘𝐺), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340  c0 4058  cfv 6049  (class class class)co 6814  cmpt2 6816  0cc0 10148  0cn0 11504  Vtxcvtx 26094   ClWWalksN cclwwlkn 27168  ClWWalksNOncclwwlknon 27253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-i2m1 10216  ax-1ne0 10217  ax-rrecex 10220  ax-cnre 10221
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-nn 11233  df-n0 11505  df-clwwlknon 27254
This theorem is referenced by:  clwwlknon  27256  clwwlknonOLD  27257  clwwlk0on0  27260  clwwlknon0  27261  2clwwlk2clwwlklem  27524
  Copyright terms: Public domain W3C validator