![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknonex2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for clwwlknonex2 27280: Transformation of a special half-open integer range into a union of a smaller half-open integer range and an unordered pair. This Lemma would not hold for 𝑁 = 2, i.e., (♯‘𝑊) = 0, because (0..^(((♯‘𝑊) + 2) − 1)) = (0..^((0 + 2) − 1)) = (0..^1) = {0} ≠ {-1, 0} = (∅ ∪ {-1, 0}) = ((0..^(0 − 1)) ∪ {(0 − 1), 0}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}). (Contributed by AV, 22-Sep-2018.) (Revised by AV, 26-Jan-2022.) |
Ref | Expression |
---|---|
clwwlknonex2lem1 | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 11912 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℂ) | |
2 | 2cnd 11306 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → 2 ∈ ℂ) | |
3 | 1, 2 | subcld 10605 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℂ) |
4 | 3 | adantr 472 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑁 − 2) ∈ ℂ) |
5 | eleq1 2828 | . . . . . 6 ⊢ ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ)) | |
6 | 5 | adantl 473 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ)) |
7 | 4, 6 | mpbird 247 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (♯‘𝑊) ∈ ℂ) |
8 | 2cnd 11306 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 2 ∈ ℂ) | |
9 | 1cnd 10269 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 1 ∈ ℂ) | |
10 | 7, 8, 9 | addsubd 10626 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) + 2) − 1) = (((♯‘𝑊) − 1) + 2)) |
11 | 10 | oveq2d 6831 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = (0..^(((♯‘𝑊) − 1) + 2))) |
12 | oveq1 6822 | . . . . 5 ⊢ ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1)) | |
13 | 12 | adantl 473 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1)) |
14 | uznn0sub 11933 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 3) ∈ ℕ0) | |
15 | 1cnd 10269 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘3) → 1 ∈ ℂ) | |
16 | 1, 2, 15 | subsub4d 10636 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) = (𝑁 − (2 + 1))) |
17 | 2p1e3 11364 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
18 | 17 | oveq2i 6826 | . . . . . . 7 ⊢ (𝑁 − (2 + 1)) = (𝑁 − 3) |
19 | 16, 18 | syl6eq 2811 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) = (𝑁 − 3)) |
20 | nn0uz 11936 | . . . . . . . 8 ⊢ ℕ0 = (ℤ≥‘0) | |
21 | 20 | eqcomi 2770 | . . . . . . 7 ⊢ (ℤ≥‘0) = ℕ0 |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (ℤ≥‘0) = ℕ0) |
23 | 14, 19, 22 | 3eltr4d 2855 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) − 1) ∈ (ℤ≥‘0)) |
24 | 23 | adantr 472 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝑁 − 2) − 1) ∈ (ℤ≥‘0)) |
25 | 13, 24 | eqeltrd 2840 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) ∈ (ℤ≥‘0)) |
26 | fzosplitpr 12792 | . . 3 ⊢ (((♯‘𝑊) − 1) ∈ (ℤ≥‘0) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)})) | |
27 | 25, 26 | syl 17 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)})) |
28 | 7, 9 | npcand 10609 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊)) |
29 | 28 | preq2d 4420 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)} = {((♯‘𝑊) − 1), (♯‘𝑊)}) |
30 | 29 | uneq2d 3911 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
31 | 11, 27, 30 | 3eqtrd 2799 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∪ cun 3714 {cpr 4324 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 0cc0 10149 1c1 10150 + caddc 10152 − cmin 10479 2c2 11283 3c3 11284 ℕ0cn0 11505 ℤ≥cuz 11900 ..^cfzo 12680 ♯chash 13332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-fz 12541 df-fzo 12681 |
This theorem is referenced by: clwwlknonex2 27280 |
Copyright terms: Public domain | W3C validator |