![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknonex2e | Structured version Visualization version GIF version |
Description: Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk on vertex 𝑋. (Contributed by AV, 17-Apr-2022.) |
Ref | Expression |
---|---|
clwwlknonex2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknonex2.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknonex2e | ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknonex2.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | clwwlknonex2.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | clwwlknonex2 27258 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺)) |
4 | isclwwlknon 27237 | . . . . 5 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) | |
5 | isclwwlkn 27153 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2))) | |
6 | 1 | clwwlkbp 27108 | . . . . . . . . . . . . 13 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅)) |
7 | 6 | simp2d 1138 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word 𝑉) |
8 | clwwlkgt0 27109 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → 0 < (♯‘𝑊)) | |
9 | 7, 8 | jca 555 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
10 | 9 | adantr 472 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
11 | 5, 10 | sylbi 207 | . . . . . . . . 9 ⊢ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
12 | 11 | adantr 472 | . . . . . . . 8 ⊢ ((𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
13 | 3simpa 1143 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) | |
14 | ccat2s1fst 13615 | . . . . . . . 8 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = (𝑊‘0)) | |
15 | 12, 13, 14 | syl2anr 496 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = (𝑊‘0)) |
16 | simprr 813 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊‘0) = 𝑋) | |
17 | 15, 16 | eqtrd 2794 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋) |
18 | 17 | ex 449 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) |
19 | 4, 18 | syl5bi 232 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) |
20 | 19 | a1d 25 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋))) |
21 | 20 | 3imp 1102 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋) |
22 | isclwwlknon 27237 | . 2 ⊢ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺) ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) | |
23 | 3, 21, 22 | sylanbrc 701 | 1 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 Vcvv 3340 ∅c0 4058 {cpr 4323 class class class wbr 4804 ‘cfv 6049 (class class class)co 6813 0cc0 10128 < clt 10266 − cmin 10458 2c2 11262 3c3 11263 ℤ≥cuz 11879 ♯chash 13311 Word cword 13477 ++ cconcat 13479 〈“cs1 13480 Vtxcvtx 26073 Edgcedg 26138 ClWWalkscclwwlk 27104 ClWWalksN cclwwlkn 27147 ClWWalksNOncclwwlknon 27232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-xnn0 11556 df-z 11570 df-uz 11880 df-rp 12026 df-fz 12520 df-fzo 12660 df-hash 13312 df-word 13485 df-lsw 13486 df-concat 13487 df-s1 13488 df-clwwlk 27105 df-clwwlkn 27149 df-clwwlknon 27233 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |