![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknonel | Structured version Visualization version GIF version |
Description: Characterization of a word over the set of vertices representing a closed walk on vertex 𝑋 of (nonzero) length 𝑁 in a graph 𝐺. This theorem would not hold for 𝑁 = 0 if 𝑊 = 𝑋 = ∅. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknonel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknonel.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknonel | ⊢ (𝑁 ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknonel.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | clwwlknonel.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | isclwwlk 27099 | . . . . . 6 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)) |
4 | simpl 474 | . . . . . . . . . . . . 13 ⊢ (((♯‘𝑊) = 𝑁 ∧ 𝑊 = ∅) → (♯‘𝑊) = 𝑁) | |
5 | fveq2 6344 | . . . . . . . . . . . . . . 15 ⊢ (𝑊 = ∅ → (♯‘𝑊) = (♯‘∅)) | |
6 | hash0 13342 | . . . . . . . . . . . . . . 15 ⊢ (♯‘∅) = 0 | |
7 | 5, 6 | syl6eq 2802 | . . . . . . . . . . . . . 14 ⊢ (𝑊 = ∅ → (♯‘𝑊) = 0) |
8 | 7 | adantl 473 | . . . . . . . . . . . . 13 ⊢ (((♯‘𝑊) = 𝑁 ∧ 𝑊 = ∅) → (♯‘𝑊) = 0) |
9 | 4, 8 | eqtr3d 2788 | . . . . . . . . . . . 12 ⊢ (((♯‘𝑊) = 𝑁 ∧ 𝑊 = ∅) → 𝑁 = 0) |
10 | 9 | ex 449 | . . . . . . . . . . 11 ⊢ ((♯‘𝑊) = 𝑁 → (𝑊 = ∅ → 𝑁 = 0)) |
11 | 10 | necon3d 2945 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) = 𝑁 → (𝑁 ≠ 0 → 𝑊 ≠ ∅)) |
12 | 11 | impcom 445 | . . . . . . . . 9 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → 𝑊 ≠ ∅) |
13 | 12 | biantrud 529 | . . . . . . . 8 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word 𝑉 ↔ (𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅))) |
14 | 13 | bicomd 213 | . . . . . . 7 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) ↔ 𝑊 ∈ Word 𝑉)) |
15 | 14 | 3anbi1d 1544 | . . . . . 6 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸))) |
16 | 3, 15 | syl5bb 272 | . . . . 5 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸))) |
17 | 16 | a1d 25 | . . . 4 ⊢ ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → ((𝑊‘0) = 𝑋 → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)))) |
18 | 17 | expimpd 630 | . . 3 ⊢ (𝑁 ≠ 0 → (((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)))) |
19 | 18 | pm5.32rd 675 | . 2 ⊢ (𝑁 ≠ 0 → ((𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))) |
20 | isclwwlknon 27229 | . . 3 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) | |
21 | isclwwlkn 27145 | . . . 4 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁)) | |
22 | 21 | anbi1i 733 | . . 3 ⊢ ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ↔ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑊‘0) = 𝑋)) |
23 | anass 684 | . . 3 ⊢ (((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑊‘0) = 𝑋) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) | |
24 | 20, 22, 23 | 3bitri 286 | . 2 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) |
25 | 3anass 1081 | . 2 ⊢ (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) | |
26 | 19, 24, 25 | 3bitr4g 303 | 1 ⊢ (𝑁 ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ≠ wne 2924 ∀wral 3042 ∅c0 4050 {cpr 4315 ‘cfv 6041 (class class class)co 6805 0cc0 10120 1c1 10121 + caddc 10123 − cmin 10450 ..^cfzo 12651 ♯chash 13303 Word cword 13469 lastS clsw 13470 Vtxcvtx 26065 Edgcedg 26130 ClWWalkscclwwlk 27096 ClWWalksN cclwwlkn 27139 ClWWalksNOncclwwlknon 27224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-map 8017 df-pm 8018 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8947 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-xnn0 11548 df-z 11562 df-uz 11872 df-fz 12512 df-fzo 12652 df-hash 13304 df-word 13477 df-clwwlk 27097 df-clwwlkn 27141 df-clwwlknon 27225 |
This theorem is referenced by: clwwlknonex2 27250 numclwlk1lem2foa 27505 numclwlk1lem2fo 27509 |
Copyright terms: Public domain | W3C validator |