MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonel Structured version   Visualization version   GIF version

Theorem clwwlknonel 27234
Description: Characterization of a word over the set of vertices representing a closed walk on vertex 𝑋 of (nonzero) length 𝑁 in a graph 𝐺. This theorem would not hold for 𝑁 = 0 if 𝑊 = 𝑋 = ∅. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 24-Mar-2022.)
Hypotheses
Ref Expression
clwwlknonel.v 𝑉 = (Vtx‘𝐺)
clwwlknonel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknonel (𝑁 ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊
Allowed substitution hints:   𝐸(𝑖)   𝑁(𝑖)   𝑉(𝑖)   𝑋(𝑖)

Proof of Theorem clwwlknonel
StepHypRef Expression
1 clwwlknonel.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
2 clwwlknonel.e . . . . . . 7 𝐸 = (Edg‘𝐺)
31, 2isclwwlk 27099 . . . . . 6 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸))
4 simpl 474 . . . . . . . . . . . . 13 (((♯‘𝑊) = 𝑁𝑊 = ∅) → (♯‘𝑊) = 𝑁)
5 fveq2 6344 . . . . . . . . . . . . . . 15 (𝑊 = ∅ → (♯‘𝑊) = (♯‘∅))
6 hash0 13342 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
75, 6syl6eq 2802 . . . . . . . . . . . . . 14 (𝑊 = ∅ → (♯‘𝑊) = 0)
87adantl 473 . . . . . . . . . . . . 13 (((♯‘𝑊) = 𝑁𝑊 = ∅) → (♯‘𝑊) = 0)
94, 8eqtr3d 2788 . . . . . . . . . . . 12 (((♯‘𝑊) = 𝑁𝑊 = ∅) → 𝑁 = 0)
109ex 449 . . . . . . . . . . 11 ((♯‘𝑊) = 𝑁 → (𝑊 = ∅ → 𝑁 = 0))
1110necon3d 2945 . . . . . . . . . 10 ((♯‘𝑊) = 𝑁 → (𝑁 ≠ 0 → 𝑊 ≠ ∅))
1211impcom 445 . . . . . . . . 9 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → 𝑊 ≠ ∅)
1312biantrud 529 . . . . . . . 8 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ Word 𝑉 ↔ (𝑊 ∈ Word 𝑉𝑊 ≠ ∅)))
1413bicomd 213 . . . . . . 7 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ↔ 𝑊 ∈ Word 𝑉))
15143anbi1d 1544 . . . . . 6 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)))
163, 15syl5bb 272 . . . . 5 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸)))
1716a1d 25 . . . 4 ((𝑁 ≠ 0 ∧ (♯‘𝑊) = 𝑁) → ((𝑊‘0) = 𝑋 → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸))))
1817expimpd 630 . . 3 (𝑁 ≠ 0 → (((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸))))
1918pm5.32rd 675 . 2 (𝑁 ≠ 0 → ((𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋))))
20 isclwwlknon 27229 . . 3 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
21 isclwwlkn 27145 . . . 4 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁))
2221anbi1i 733 . . 3 ((𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) ↔ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑊‘0) = 𝑋))
23 anass 684 . . 3 (((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ (𝑊‘0) = 𝑋) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))
2420, 22, 233bitri 286 . 2 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))
25 3anass 1081 . 2 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ ((♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))
2619, 24, 253bitr4g 303 1 (𝑁 ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {( lastS ‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = 𝑁 ∧ (𝑊‘0) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  wral 3042  c0 4050  {cpr 4315  cfv 6041  (class class class)co 6805  0cc0 10120  1c1 10121   + caddc 10123  cmin 10450  ..^cfzo 12651  chash 13303  Word cword 13469   lastS clsw 13470  Vtxcvtx 26065  Edgcedg 26130  ClWWalkscclwwlk 27096   ClWWalksN cclwwlkn 27139  ClWWalksNOncclwwlknon 27224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-n0 11477  df-xnn0 11548  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652  df-hash 13304  df-word 13477  df-clwwlk 27097  df-clwwlkn 27141  df-clwwlknon 27225
This theorem is referenced by:  clwwlknonex2  27250  numclwlk1lem2foa  27505  numclwlk1lem2fo  27509
  Copyright terms: Public domain W3C validator