Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknondisjOLD Structured version   Visualization version   GIF version

Theorem clwwlknondisjOLD 27264
 Description: Obsolete version of clwwlknondisj 27260 as of 3-Mar-2022. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
clwwlknondisjOLD Disj 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}
Distinct variable groups:   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉   𝑥,𝑤
Allowed substitution hints:   𝐺(𝑤)   𝑁(𝑤)   𝑉(𝑤)

Proof of Theorem clwwlknondisjOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 inrab 4042 . . . . 5 ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)}
2 eqtr2 2780 . . . . . . . 8 (((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦) → 𝑥 = 𝑦)
32con3i 150 . . . . . . 7 𝑥 = 𝑦 → ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦))
43ralrimivw 3105 . . . . . 6 𝑥 = 𝑦 → ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦))
5 rabeq0 4100 . . . . . 6 ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)} = ∅ ↔ ∀𝑤 ∈ (𝑁 ClWWalksN 𝐺) ¬ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦))
64, 5sylibr 224 . . . . 5 𝑥 = 𝑦 → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑥 ∧ (𝑤‘0) = 𝑦)} = ∅)
71, 6syl5eq 2806 . . . 4 𝑥 = 𝑦 → ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = ∅)
87orri 390 . . 3 (𝑥 = 𝑦 ∨ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = ∅)
98rgen2w 3063 . 2 𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = ∅)
10 eqeq2 2771 . . . 4 (𝑥 = 𝑦 → ((𝑤‘0) = 𝑥 ↔ (𝑤‘0) = 𝑦))
1110rabbidv 3329 . . 3 (𝑥 = 𝑦 → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦})
1211disjor 4786 . 2 (Disj 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ ∀𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ({𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∩ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑦}) = ∅))
139, 12mpbir 221 1 Disj 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∨ wo 382   ∧ wa 383   = wceq 1632  ∀wral 3050  {crab 3054   ∩ cin 3714  ∅c0 4058  Disj wdisj 4772  ‘cfv 6049  (class class class)co 6813  0cc0 10128   ClWWalksN cclwwlkn 27147 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rmo 3058  df-rab 3059  df-v 3342  df-dif 3718  df-in 3722  df-nul 4059  df-disj 4773 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator