MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonccat Structured version   Visualization version   GIF version

Theorem clwwlknonccat 27268
Description: The concatenation of two words representing closed walks on a vertex 𝑋 represents a closed walk on vertex 𝑋. The resulting walk is a "double loop", starting at vertex 𝑋, coming back to 𝑋 by the first walk, following the second walk and finally coming back to 𝑋 again. (Contributed by AV, 24-Apr-2022.)
Assertion
Ref Expression
clwwlknonccat ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)))

Proof of Theorem clwwlknonccat
StepHypRef Expression
1 simpl 468 . . . . 5 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 𝐴 ∈ (𝑀 ClWWalksN 𝐺))
21adantr 466 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐴 ∈ (𝑀 ClWWalksN 𝐺))
3 simpl 468 . . . . 5 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝐵 ∈ (𝑁 ClWWalksN 𝐺))
43adantl 467 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐵 ∈ (𝑁 ClWWalksN 𝐺))
5 simpr 471 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → (𝐴‘0) = 𝑋)
65adantr 466 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴‘0) = 𝑋)
7 simpr 471 . . . . . . 7 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → (𝐵‘0) = 𝑋)
87eqcomd 2776 . . . . . 6 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝑋 = (𝐵‘0))
98adantl 467 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝑋 = (𝐵‘0))
106, 9eqtrd 2804 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴‘0) = (𝐵‘0))
11 clwwlknccat 27218 . . . 4 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ 𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
122, 4, 10, 11syl3anc 1475 . . 3 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → (𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺))
13 eqid 2770 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
1413clwwlknwrd 27186 . . . . . . 7 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝐴 ∈ Word (Vtx‘𝐺))
1514adantr 466 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 𝐴 ∈ Word (Vtx‘𝐺))
1615adantr 466 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐴 ∈ Word (Vtx‘𝐺))
1713clwwlknwrd 27186 . . . . . . 7 (𝐵 ∈ (𝑁 ClWWalksN 𝐺) → 𝐵 ∈ Word (Vtx‘𝐺))
1817adantr 466 . . . . . 6 ((𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋) → 𝐵 ∈ Word (Vtx‘𝐺))
1918adantl 467 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 𝐵 ∈ Word (Vtx‘𝐺))
20 clwwlknnn 27185 . . . . . . . 8 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 𝑀 ∈ ℕ)
21 clwwlknlen 27184 . . . . . . . 8 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → (♯‘𝐴) = 𝑀)
22 nngt0 11250 . . . . . . . . 9 (𝑀 ∈ ℕ → 0 < 𝑀)
23 breq2 4788 . . . . . . . . 9 ((♯‘𝐴) = 𝑀 → (0 < (♯‘𝐴) ↔ 0 < 𝑀))
2422, 23syl5ibrcom 237 . . . . . . . 8 (𝑀 ∈ ℕ → ((♯‘𝐴) = 𝑀 → 0 < (♯‘𝐴)))
2520, 21, 24sylc 65 . . . . . . 7 (𝐴 ∈ (𝑀 ClWWalksN 𝐺) → 0 < (♯‘𝐴))
2625adantr 466 . . . . . 6 ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) → 0 < (♯‘𝐴))
2726adantr 466 . . . . 5 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → 0 < (♯‘𝐴))
28 ccatfv0 13564 . . . . 5 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝐴)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
2916, 19, 27, 28syl3anc 1475 . . . 4 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
3029, 6eqtrd 2804 . . 3 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵)‘0) = 𝑋)
3112, 30jca 495 . 2 (((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)) → ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐵)‘0) = 𝑋))
32 isclwwlknon 27261 . . 3 (𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ↔ (𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋))
33 isclwwlknon 27261 . . 3 (𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋))
3432, 33anbi12i 604 . 2 ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) ↔ ((𝐴 ∈ (𝑀 ClWWalksN 𝐺) ∧ (𝐴‘0) = 𝑋) ∧ (𝐵 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝐵‘0) = 𝑋)))
35 isclwwlknon 27261 . 2 ((𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)) ↔ ((𝐴 ++ 𝐵) ∈ ((𝑀 + 𝑁) ClWWalksN 𝐺) ∧ ((𝐴 ++ 𝐵)‘0) = 𝑋))
3631, 34, 353imtr4i 281 1 ((𝐴 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑀) ∧ 𝐵 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) → (𝐴 ++ 𝐵) ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144   class class class wbr 4784  cfv 6031  (class class class)co 6792  0cc0 10137   + caddc 10140   < clt 10275  cn 11221  chash 13320  Word cword 13486   ++ cconcat 13488  Vtxcvtx 26094   ClWWalksN cclwwlkn 27171  ClWWalksNOncclwwlknon 27256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-lsw 13495  df-concat 13496  df-clwwlk 27129  df-clwwlkn 27173  df-clwwlknon 27257
This theorem is referenced by:  2clwwlk2clwwlk  27532
  Copyright terms: Public domain W3C validator