![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknon1sn | Structured version Visualization version GIF version |
Description: The set of (closed) walks on vertex 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋 iff there is a loop at 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) |
Ref | Expression |
---|---|
clwwlknon1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknon1.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
clwwlknon1.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknon1sn | ⊢ (𝑋 ∈ 𝑉 → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑋} ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3036 | . . . 4 ⊢ ({𝑋} ∉ 𝐸 ↔ ¬ {𝑋} ∈ 𝐸) | |
2 | clwwlknon1.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | clwwlknon1.c | . . . . . . . 8 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
4 | clwwlknon1.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | 2, 3, 4 | clwwlknon1nloop 27247 | . . . . . . 7 ⊢ ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅) |
6 | 5 | adantl 473 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅) |
7 | s1cli 13575 | . . . . . . . . . 10 ⊢ 〈“𝑋”〉 ∈ Word V | |
8 | 7 | elexi 3353 | . . . . . . . . 9 ⊢ 〈“𝑋”〉 ∈ V |
9 | 8 | snnz 4452 | . . . . . . . 8 ⊢ {〈“𝑋”〉} ≠ ∅ |
10 | 9 | nesymi 2989 | . . . . . . 7 ⊢ ¬ ∅ = {〈“𝑋”〉} |
11 | eqeq1 2764 | . . . . . . 7 ⊢ ((𝑋𝐶1) = ∅ → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ ∅ = {〈“𝑋”〉})) | |
12 | 10, 11 | mtbiri 316 | . . . . . 6 ⊢ ((𝑋𝐶1) = ∅ → ¬ (𝑋𝐶1) = {〈“𝑋”〉}) |
13 | 6, 12 | syl 17 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → ¬ (𝑋𝐶1) = {〈“𝑋”〉}) |
14 | 13 | ex 449 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ({𝑋} ∉ 𝐸 → ¬ (𝑋𝐶1) = {〈“𝑋”〉})) |
15 | 1, 14 | syl5bir 233 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (¬ {𝑋} ∈ 𝐸 → ¬ (𝑋𝐶1) = {〈“𝑋”〉})) |
16 | 15 | con4d 114 | . 2 ⊢ (𝑋 ∈ 𝑉 → ((𝑋𝐶1) = {〈“𝑋”〉} → {𝑋} ∈ 𝐸)) |
17 | 2, 3, 4 | clwwlknon1loop 27246 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {〈“𝑋”〉}) |
18 | 17 | ex 449 | . 2 ⊢ (𝑋 ∈ 𝑉 → ({𝑋} ∈ 𝐸 → (𝑋𝐶1) = {〈“𝑋”〉})) |
19 | 16, 18 | impbid 202 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑋} ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∉ wnel 3035 Vcvv 3340 ∅c0 4058 {csn 4321 ‘cfv 6049 (class class class)co 6813 1c1 10129 Word cword 13477 〈“cs1 13480 Vtxcvtx 26073 Edgcedg 26138 ClWWalksNOncclwwlknon 27232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-xnn0 11556 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-hash 13312 df-word 13485 df-lsw 13486 df-s1 13488 df-clwwlk 27105 df-clwwlkn 27149 df-clwwlknon 27233 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |