![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknon1loop | Structured version Visualization version GIF version |
Description: If there is a loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 25-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknon1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknon1.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
clwwlknon1.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknon1loop | ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {〈“𝑋”〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 811 | . . . 4 ⊢ ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) → 𝑤 = 〈“𝑋”〉) | |
2 | s1cl 13592 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑉 → 〈“𝑋”〉 ∈ Word 𝑉) | |
3 | 2 | adantr 472 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → 〈“𝑋”〉 ∈ Word 𝑉) |
4 | 3 | adantr 472 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → 〈“𝑋”〉 ∈ Word 𝑉) |
5 | eleq1 2827 | . . . . . . . 8 ⊢ (𝑤 = 〈“𝑋”〉 → (𝑤 ∈ Word 𝑉 ↔ 〈“𝑋”〉 ∈ Word 𝑉)) | |
6 | 5 | adantl 473 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 ∈ Word 𝑉 ↔ 〈“𝑋”〉 ∈ Word 𝑉)) |
7 | 4, 6 | mpbird 247 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → 𝑤 ∈ Word 𝑉) |
8 | simpr 479 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → {𝑋} ∈ 𝐸) | |
9 | 8 | anim1i 593 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → ({𝑋} ∈ 𝐸 ∧ 𝑤 = 〈“𝑋”〉)) |
10 | 9 | ancomd 466 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) |
11 | 7, 10 | jca 555 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸))) |
12 | 11 | ex 449 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑤 = 〈“𝑋”〉 → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)))) |
13 | 1, 12 | impbid2 216 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) |
14 | 13 | alrimiv 2004 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) |
15 | clwwlknon1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
16 | clwwlknon1.c | . . . . . 6 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
17 | clwwlknon1.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
18 | 15, 16, 17 | clwwlknon1 27266 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)}) |
19 | 18 | eqeq1d 2762 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉})) |
20 | 19 | adantr 472 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉})) |
21 | rabeqsn 4358 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) | |
22 | 20, 21 | syl6bb 276 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉))) |
23 | 14, 22 | mpbird 247 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {〈“𝑋”〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1630 = wceq 1632 ∈ wcel 2139 {crab 3054 {csn 4321 ‘cfv 6049 (class class class)co 6814 1c1 10149 Word cword 13497 〈“cs1 13500 Vtxcvtx 26094 Edgcedg 26159 ClWWalksNOncclwwlknon 27253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-xnn0 11576 df-z 11590 df-uz 11900 df-fz 12540 df-fzo 12680 df-hash 13332 df-word 13505 df-lsw 13506 df-s1 13508 df-clwwlk 27126 df-clwwlkn 27170 df-clwwlknon 27254 |
This theorem is referenced by: clwwlknon1sn 27269 clwwlknon1le1 27270 |
Copyright terms: Public domain | W3C validator |