Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknclwwlkdif Structured version   Visualization version   GIF version

Theorem clwwlknclwwlkdif 27121
 Description: The set 𝐴 of walks of length 𝑁 starting with a fixed vertex 𝑉 and ending not at this vertex is the difference between the set 𝐶 of walks of length 𝑁 starting with this vertex 𝑋 and the set 𝐵 of closed walks of length 𝑁 anchored at this vertex 𝑋. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) (Revised by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
clwwlknclwwlkdif.a 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
clwwlknclwwlkdif.b 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
clwwlknclwwlkdif.c 𝐶 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
Assertion
Ref Expression
clwwlknclwwlkdif 𝐴 = (𝐶𝐵)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑤,𝑋
Allowed substitution hints:   𝐴(𝑤)   𝐵(𝑤)   𝐶(𝑤)

Proof of Theorem clwwlknclwwlkdif
StepHypRef Expression
1 clwwlknclwwlkdif.a . 2 𝐴 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
2 clwwlknclwwlkdif.c . . . 4 𝐶 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋}
3 clwwlknclwwlkdif.b . . . . 5 𝐵 = (𝑋(𝑁 WWalksNOn 𝐺)𝑋)
4 eqid 2760 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
54iswwlksnon 26978 . . . . 5 (𝑋(𝑁 WWalksNOn 𝐺)𝑋) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)}
63, 5eqtri 2782 . . . 4 𝐵 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)}
72, 6difeq12i 3869 . . 3 (𝐶𝐵) = ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)})
8 difrab 4044 . . 3 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑋} ∖ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)}) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋))}
9 annotanannot 977 . . . . 5 (((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)) ↔ ((𝑤‘0) = 𝑋 ∧ ¬ (𝑤𝑁) = 𝑋))
10 df-ne 2933 . . . . . . 7 ((𝑤𝑁) ≠ 𝑋 ↔ ¬ (𝑤𝑁) = 𝑋)
11 wwlknlsw 26972 . . . . . . . 8 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤𝑁) = (lastS‘𝑤))
1211neeq1d 2991 . . . . . . 7 (𝑤 ∈ (𝑁 WWalksN 𝐺) → ((𝑤𝑁) ≠ 𝑋 ↔ (lastS‘𝑤) ≠ 𝑋))
1310, 12syl5bbr 274 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (¬ (𝑤𝑁) = 𝑋 ↔ (lastS‘𝑤) ≠ 𝑋))
1413anbi2d 742 . . . . 5 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ ¬ (𝑤𝑁) = 𝑋) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
159, 14syl5bb 272 . . . 4 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋)) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
1615rabbiia 3324 . . 3 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ¬ ((𝑤‘0) = 𝑋 ∧ (𝑤𝑁) = 𝑋))} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}
177, 8, 163eqtrri 2787 . 2 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} = (𝐶𝐵)
181, 17eqtri 2782 1 𝐴 = (𝐶𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  {crab 3054   ∖ cdif 3712  ‘cfv 6049  (class class class)co 6814  0cc0 10148  lastSclsw 13498  Vtxcvtx 26094   WWalksN cwwlksn 26950   WWalksNOn cwwlksnon 26951 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-hash 13332  df-word 13505  df-lsw 13506  df-wwlks 26954  df-wwlksn 26955  df-wwlksnon 26956 This theorem is referenced by:  clwwlknclwwlkdifnum  27122
 Copyright terms: Public domain W3C validator