Step | Hyp | Ref
| Expression |
1 | | df-clwwlknOLD 27150 |
. . . . 5
⊢
ClWWalksNOLD = (𝑛
∈ ℕ, 𝑔 ∈ V
↦ {𝑤 ∈
(ClWWalks‘𝑔) ∣
(♯‘𝑤) = 𝑛}) |
2 | 1 | a1i 11 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ V) → ClWWalksNOLD =
(𝑛 ∈ ℕ, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛})) |
3 | | fveq2 6352 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (ClWWalks‘𝑔) = (ClWWalks‘𝐺)) |
4 | 3 | adantl 473 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → (ClWWalks‘𝑔) = (ClWWalks‘𝐺)) |
5 | | eqeq2 2771 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁)) |
6 | 5 | adantr 472 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → ((♯‘𝑤) = 𝑛 ↔ (♯‘𝑤) = 𝑁)) |
7 | 4, 6 | rabeqbidv 3335 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑔 = 𝐺) → {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛} = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
8 | 7 | adantl 473 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐺 ∈ V) ∧ (𝑛 = 𝑁 ∧ 𝑔 = 𝐺)) → {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛} = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
9 | | simpl 474 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ V) → 𝑁 ∈
ℕ) |
10 | | simpr 479 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ V) → 𝐺 ∈ V) |
11 | | fvex 6362 |
. . . . . 6
⊢
(ClWWalks‘𝐺)
∈ V |
12 | 11 | rabex 4964 |
. . . . 5
⊢ {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} ∈ V |
13 | 12 | a1i 11 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ V) → {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} ∈ V) |
14 | 2, 8, 9, 10, 13 | ovmpt2d 6953 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ V) → (𝑁ClWWalksNOLD𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
15 | 14 | expcom 450 |
. 2
⊢ (𝐺 ∈ V → (𝑁 ∈ ℕ → (𝑁ClWWalksNOLD𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁})) |
16 | 1 | reldmmpt2 6936 |
. . . . 5
⊢ Rel dom
ClWWalksNOLD |
17 | 16 | ovprc2 6848 |
. . . 4
⊢ (¬
𝐺 ∈ V → (𝑁ClWWalksNOLD𝐺) = ∅) |
18 | | fvprc 6346 |
. . . . . 6
⊢ (¬
𝐺 ∈ V →
(ClWWalks‘𝐺) =
∅) |
19 | 18 | rabeqdv 3334 |
. . . . 5
⊢ (¬
𝐺 ∈ V → {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = {𝑤 ∈ ∅ ∣ (♯‘𝑤) = 𝑁}) |
20 | | rab0 4098 |
. . . . 5
⊢ {𝑤 ∈ ∅ ∣
(♯‘𝑤) = 𝑁} = ∅ |
21 | 19, 20 | syl6eq 2810 |
. . . 4
⊢ (¬
𝐺 ∈ V → {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁} = ∅) |
22 | 17, 21 | eqtr4d 2797 |
. . 3
⊢ (¬
𝐺 ∈ V → (𝑁ClWWalksNOLD𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |
23 | 22 | a1d 25 |
. 2
⊢ (¬
𝐺 ∈ V → (𝑁 ∈ ℕ → (𝑁ClWWalksNOLD𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁})) |
24 | 15, 23 | pm2.61i 176 |
1
⊢ (𝑁 ∈ ℕ → (𝑁ClWWalksNOLD𝐺) = {𝑤 ∈ (ClWWalks‘𝐺) ∣ (♯‘𝑤) = 𝑁}) |