MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkn1loopb Structured version   Visualization version   GIF version

Theorem clwwlkn1loopb 27199
Description: A word represents a closed walk of length 1 iff this word is a singleton word consisting of a vertex with an attached loop. (Contributed by AV, 11-Feb-2022.)
Assertion
Ref Expression
clwwlkn1loopb (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑊

Proof of Theorem clwwlkn1loopb
StepHypRef Expression
1 clwwlkn1 27197 . 2 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
2 wrdl1exs1 13593 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → ∃𝑣 ∈ (Vtx‘𝐺)𝑊 = ⟨“𝑣”⟩)
3 fveq1 6331 . . . . . . . . . . . . . . 15 (𝑊 = ⟨“𝑣”⟩ → (𝑊‘0) = (⟨“𝑣”⟩‘0))
4 s1fv 13590 . . . . . . . . . . . . . . 15 (𝑣 ∈ (Vtx‘𝐺) → (⟨“𝑣”⟩‘0) = 𝑣)
53, 4sylan9eq 2825 . . . . . . . . . . . . . 14 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝑊‘0) = 𝑣)
65sneqd 4328 . . . . . . . . . . . . 13 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → {(𝑊‘0)} = {𝑣})
76eleq1d 2835 . . . . . . . . . . . 12 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → ({(𝑊‘0)} ∈ (Edg‘𝐺) ↔ {𝑣} ∈ (Edg‘𝐺)))
87biimpd 219 . . . . . . . . . . 11 ((𝑊 = ⟨“𝑣”⟩ ∧ 𝑣 ∈ (Vtx‘𝐺)) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → {𝑣} ∈ (Edg‘𝐺)))
98ex 397 . . . . . . . . . 10 (𝑊 = ⟨“𝑣”⟩ → (𝑣 ∈ (Vtx‘𝐺) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → {𝑣} ∈ (Edg‘𝐺))))
109com13 88 . . . . . . . . 9 ({(𝑊‘0)} ∈ (Edg‘𝐺) → (𝑣 ∈ (Vtx‘𝐺) → (𝑊 = ⟨“𝑣”⟩ → {𝑣} ∈ (Edg‘𝐺))))
1110imp 393 . . . . . . . 8 (({(𝑊‘0)} ∈ (Edg‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝑣”⟩ → {𝑣} ∈ (Edg‘𝐺)))
1211ancld 540 . . . . . . 7 (({(𝑊‘0)} ∈ (Edg‘𝐺) ∧ 𝑣 ∈ (Vtx‘𝐺)) → (𝑊 = ⟨“𝑣”⟩ → (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))))
1312reximdva 3165 . . . . . 6 ({(𝑊‘0)} ∈ (Edg‘𝐺) → (∃𝑣 ∈ (Vtx‘𝐺)𝑊 = ⟨“𝑣”⟩ → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))))
142, 13syl5com 31 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))))
1514expcom 398 . . . 4 ((♯‘𝑊) = 1 → (𝑊 ∈ Word (Vtx‘𝐺) → ({(𝑊‘0)} ∈ (Edg‘𝐺) → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))))
16153imp 1101 . . 3 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) → ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
17 s1len 13586 . . . . . . . 8 (♯‘⟨“𝑣”⟩) = 1
1817a1i 11 . . . . . . 7 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → (♯‘⟨“𝑣”⟩) = 1)
19 s1cl 13582 . . . . . . . 8 (𝑣 ∈ (Vtx‘𝐺) → ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺))
2019adantr 466 . . . . . . 7 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺))
214eqcomd 2777 . . . . . . . . . . 11 (𝑣 ∈ (Vtx‘𝐺) → 𝑣 = (⟨“𝑣”⟩‘0))
2221sneqd 4328 . . . . . . . . . 10 (𝑣 ∈ (Vtx‘𝐺) → {𝑣} = {(⟨“𝑣”⟩‘0)})
2322eleq1d 2835 . . . . . . . . 9 (𝑣 ∈ (Vtx‘𝐺) → ({𝑣} ∈ (Edg‘𝐺) ↔ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
2423biimpd 219 . . . . . . . 8 (𝑣 ∈ (Vtx‘𝐺) → ({𝑣} ∈ (Edg‘𝐺) → {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
2524imp 393 . . . . . . 7 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺))
2618, 20, 253jca 1122 . . . . . 6 ((𝑣 ∈ (Vtx‘𝐺) ∧ {𝑣} ∈ (Edg‘𝐺)) → ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
2726adantrl 695 . . . . 5 ((𝑣 ∈ (Vtx‘𝐺) ∧ (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))) → ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
28 fveq2 6332 . . . . . . . 8 (𝑊 = ⟨“𝑣”⟩ → (♯‘𝑊) = (♯‘⟨“𝑣”⟩))
2928eqeq1d 2773 . . . . . . 7 (𝑊 = ⟨“𝑣”⟩ → ((♯‘𝑊) = 1 ↔ (♯‘⟨“𝑣”⟩) = 1))
30 eleq1 2838 . . . . . . 7 (𝑊 = ⟨“𝑣”⟩ → (𝑊 ∈ Word (Vtx‘𝐺) ↔ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺)))
313sneqd 4328 . . . . . . . 8 (𝑊 = ⟨“𝑣”⟩ → {(𝑊‘0)} = {(⟨“𝑣”⟩‘0)})
3231eleq1d 2835 . . . . . . 7 (𝑊 = ⟨“𝑣”⟩ → ({(𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺)))
3329, 30, 323anbi123d 1547 . . . . . 6 (𝑊 = ⟨“𝑣”⟩ → (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺))))
3433ad2antrl 707 . . . . 5 ((𝑣 ∈ (Vtx‘𝐺) ∧ (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))) → (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ((♯‘⟨“𝑣”⟩) = 1 ∧ ⟨“𝑣”⟩ ∈ Word (Vtx‘𝐺) ∧ {(⟨“𝑣”⟩‘0)} ∈ (Edg‘𝐺))))
3527, 34mpbird 247 . . . 4 ((𝑣 ∈ (Vtx‘𝐺) ∧ (𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺))) → ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
3635rexlimiva 3176 . . 3 (∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
3716, 36impbii 199 . 2 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
381, 37bitri 264 1 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ∃𝑣 ∈ (Vtx‘𝐺)(𝑊 = ⟨“𝑣”⟩ ∧ {𝑣} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wrex 3062  {csn 4316  cfv 6031  (class class class)co 6793  0cc0 10138  1c1 10139  chash 13321  Word cword 13487  ⟨“cs1 13490  Vtxcvtx 26095  Edgcedg 26160   ClWWalksN cclwwlkn 27174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-xnn0 11566  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-lsw 13496  df-s1 13498  df-clwwlk 27132  df-clwwlkn 27176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator