Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkfo Structured version   Visualization version   GIF version

Theorem clwwlkfo 27201
 Description: Lemma 4 for clwwlkf1o 27202: F is an onto function. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.)
Hypotheses
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
clwwlkf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡 substr ⟨0, 𝑁⟩))
Assertion
Ref Expression
clwwlkfo (𝑁 ∈ ℕ → 𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁   𝑡,𝐷   𝑡,𝐺,𝑤   𝑡,𝑁
Allowed substitution hints:   𝐷(𝑤)   𝐹(𝑤,𝑡)

Proof of Theorem clwwlkfo
Dummy variables 𝑖 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwwlkf1o.d . . 3 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑤) = (𝑤‘0)}
2 clwwlkf1o.f . . 3 𝐹 = (𝑡𝐷 ↦ (𝑡 substr ⟨0, 𝑁⟩))
31, 2clwwlkf 27198 . 2 (𝑁 ∈ ℕ → 𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺))
4 eqid 2761 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2761 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
64, 5clwwlknp 27187 . . . . . . 7 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
7 simpr 479 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
8 simpl1 1228 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁))
9 3simpc 1147 . . . . . . . . . . 11 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
109adantr 472 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)))
111clwwlkel 27197 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺))) → (𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷)
127, 8, 10, 11syl3anc 1477 . . . . . . . . 9 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷)
13 opeq2 4555 . . . . . . . . . . . . . . 15 (𝑁 = (♯‘𝑝) → ⟨0, 𝑁⟩ = ⟨0, (♯‘𝑝)⟩)
1413eqcoms 2769 . . . . . . . . . . . . . 14 ((♯‘𝑝) = 𝑁 → ⟨0, 𝑁⟩ = ⟨0, (♯‘𝑝)⟩)
1514oveq2d 6831 . . . . . . . . . . . . 13 ((♯‘𝑝) = 𝑁 → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩))
1615adantl 473 . . . . . . . . . . . 12 ((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩))
17163ad2ant1 1128 . . . . . . . . . . 11 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩))
1817adantr 472 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩))
19 simpll 807 . . . . . . . . . . . . 13 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ Word (Vtx‘𝐺))
20 fstwrdne0 13553 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁)) → (𝑝‘0) ∈ (Vtx‘𝐺))
2120ancoms 468 . . . . . . . . . . . . . 14 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝‘0) ∈ (Vtx‘𝐺))
2221s1cld 13594 . . . . . . . . . . . . 13 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺))
2319, 22jca 555 . . . . . . . . . . . 12 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)))
24233ad2antl1 1201 . . . . . . . . . . 11 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → (𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)))
25 swrdccat1 13678 . . . . . . . . . . 11 ((𝑝 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑝‘0)”⟩ ∈ Word (Vtx‘𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩) = 𝑝)
2624, 25syl 17 . . . . . . . . . 10 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, (♯‘𝑝)⟩) = 𝑝)
2718, 26eqtr2d 2796 . . . . . . . . 9 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → 𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩))
2812, 27jca 555 . . . . . . . 8 ((((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) ∧ 𝑁 ∈ ℕ) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩)))
2928ex 449 . . . . . . 7 (((𝑝 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑝) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑝𝑖), (𝑝‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑝), (𝑝‘0)} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩))))
306, 29syl 17 . . . . . 6 (𝑝 ∈ (𝑁 ClWWalksN 𝐺) → (𝑁 ∈ ℕ → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩))))
3130impcom 445 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩)))
32 oveq1 6822 . . . . . . 7 (𝑥 = (𝑝 ++ ⟨“(𝑝‘0)”⟩) → (𝑥 substr ⟨0, 𝑁⟩) = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩))
3332eqeq2d 2771 . . . . . 6 (𝑥 = (𝑝 ++ ⟨“(𝑝‘0)”⟩) → (𝑝 = (𝑥 substr ⟨0, 𝑁⟩) ↔ 𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩)))
3433rspcev 3450 . . . . 5 (((𝑝 ++ ⟨“(𝑝‘0)”⟩) ∈ 𝐷𝑝 = ((𝑝 ++ ⟨“(𝑝‘0)”⟩) substr ⟨0, 𝑁⟩)) → ∃𝑥𝐷 𝑝 = (𝑥 substr ⟨0, 𝑁⟩))
3531, 34syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝐷 𝑝 = (𝑥 substr ⟨0, 𝑁⟩))
361, 2clwwlkfv 27199 . . . . . . 7 (𝑥𝐷 → (𝐹𝑥) = (𝑥 substr ⟨0, 𝑁⟩))
3736eqeq2d 2771 . . . . . 6 (𝑥𝐷 → (𝑝 = (𝐹𝑥) ↔ 𝑝 = (𝑥 substr ⟨0, 𝑁⟩)))
3837adantl 473 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) ∧ 𝑥𝐷) → (𝑝 = (𝐹𝑥) ↔ 𝑝 = (𝑥 substr ⟨0, 𝑁⟩)))
3938rexbidva 3188 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → (∃𝑥𝐷 𝑝 = (𝐹𝑥) ↔ ∃𝑥𝐷 𝑝 = (𝑥 substr ⟨0, 𝑁⟩)))
4035, 39mpbird 247 . . 3 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝐷 𝑝 = (𝐹𝑥))
4140ralrimiva 3105 . 2 (𝑁 ∈ ℕ → ∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥𝐷 𝑝 = (𝐹𝑥))
42 dffo3 6539 . 2 (𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺) ↔ (𝐹:𝐷⟶(𝑁 ClWWalksN 𝐺) ∧ ∀𝑝 ∈ (𝑁 ClWWalksN 𝐺)∃𝑥𝐷 𝑝 = (𝐹𝑥)))
433, 41, 42sylanbrc 701 1 (𝑁 ∈ ℕ → 𝐹:𝐷onto→(𝑁 ClWWalksN 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140  ∀wral 3051  ∃wrex 3052  {crab 3055  {cpr 4324  ⟨cop 4328   ↦ cmpt 4882  ⟶wf 6046  –onto→wfo 6048  ‘cfv 6050  (class class class)co 6815  0cc0 10149  1c1 10150   + caddc 10152   − cmin 10479  ℕcn 11233  ..^cfzo 12680  ♯chash 13332  Word cword 13498  lastSclsw 13499   ++ cconcat 13500  ⟨“cs1 13501   substr csubstr 13502  Vtxcvtx 26095  Edgcedg 26160   WWalksN cwwlksn 26951   ClWWalksN cclwwlkn 27169 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-xnn0 11577  df-z 11591  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-hash 13333  df-word 13506  df-lsw 13507  df-concat 13508  df-s1 13509  df-substr 13510  df-wwlks 26955  df-wwlksn 26956  df-clwwlk 27127  df-clwwlkn 27171 This theorem is referenced by:  clwwlkf1o  27202
 Copyright terms: Public domain W3C validator