MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkel Structured version   Visualization version   GIF version

Theorem clwwlkel 27096
Description: Obtaining a closed walk (as word) by appending the first symbol to the word representing a walk. (Contributed by AV, 28-Sep-2018.) (Revised by AV, 25-Apr-2021.)
Hypothesis
Ref Expression
clwwlkf1o.d 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ( lastS ‘𝑤) = (𝑤‘0)}
Assertion
Ref Expression
clwwlkel ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ 𝐷)
Distinct variable groups:   𝑖,𝐺   𝑤,𝐺   𝑖,𝑁   𝑤,𝑁   𝑃,𝑖   𝑤,𝑃
Allowed substitution hints:   𝐷(𝑤,𝑖)

Proof of Theorem clwwlkel
StepHypRef Expression
1 ccatws1n0 13528 . . . . . 6 (𝑃 ∈ Word (Vtx‘𝐺) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅)
21adantr 472 . . . . 5 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅)
323ad2ant2 1126 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅)
4 simp2l 1218 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → 𝑃 ∈ Word (Vtx‘𝐺))
5 fstwrdne0 13453 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘0) ∈ (Vtx‘𝐺))
65s1cld 13494 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺))
763adant3 1124 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺))
8 ccatcl 13467 . . . . 5 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺)) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺))
94, 7, 8syl2anc 696 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺))
10 simprl 811 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → 𝑃 ∈ Word (Vtx‘𝐺))
1110adantr 472 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑃 ∈ Word (Vtx‘𝐺))
126adantr 472 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺))
13 elfzonn0 12628 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^(𝑁 − 1)) → 𝑖 ∈ ℕ0)
1413adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ ℕ0)
15 nnz 11512 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1615adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℤ)
17 elfzo0 12624 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^(𝑁 − 1)) ↔ (𝑖 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑖 < (𝑁 − 1)))
18 nn0re 11414 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
1918adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → 𝑖 ∈ ℝ)
20 nnre 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
21 peano2rem 10461 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
2220, 21syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℝ)
2322adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
2420adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
2519, 23, 243jca 1379 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → (𝑖 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ))
2625adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑖 < (𝑁 − 1)) → (𝑖 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ))
27 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑖 < (𝑁 − 1)) → 𝑖 < (𝑁 − 1))
2820ltm1d 11069 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁)
2928adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 − 1) < 𝑁)
3029adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑖 < (𝑁 − 1)) → (𝑁 − 1) < 𝑁)
31 lttr 10227 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑖 < (𝑁 − 1) ∧ (𝑁 − 1) < 𝑁) → 𝑖 < 𝑁))
3231imp 444 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑖 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑖 < (𝑁 − 1) ∧ (𝑁 − 1) < 𝑁)) → 𝑖 < 𝑁)
3326, 27, 30, 32syl12anc 1437 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑖 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑖 < (𝑁 − 1)) → 𝑖 < 𝑁)
3433ex 449 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℕ0𝑁 ∈ ℕ) → (𝑖 < (𝑁 − 1) → 𝑖 < 𝑁))
3534impancom 455 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℕ0𝑖 < (𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁))
36353adant2 1123 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ ∧ 𝑖 < (𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁))
3717, 36sylbi 207 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℕ → 𝑖 < 𝑁))
3837impcom 445 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 < 𝑁)
39 elfzo0z 12625 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑖 < 𝑁))
4014, 16, 38, 39syl3anbrc 1383 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁))
4140adantlr 753 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁))
42 oveq2 6773 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑃) = 𝑁 → (0..^(♯‘𝑃)) = (0..^𝑁))
4342eleq2d 2789 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑃) = 𝑁 → (𝑖 ∈ (0..^(♯‘𝑃)) ↔ 𝑖 ∈ (0..^𝑁)))
4443ad2antll 767 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑖 ∈ (0..^(♯‘𝑃)) ↔ 𝑖 ∈ (0..^𝑁)))
4544adantr 472 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 ∈ (0..^(♯‘𝑃)) ↔ 𝑖 ∈ (0..^𝑁)))
4641, 45mpbird 247 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^(♯‘𝑃)))
47 ccatval1 13470 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝑖 ∈ (0..^(♯‘𝑃))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖) = (𝑃𝑖))
4811, 12, 46, 47syl3anc 1439 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖) = (𝑃𝑖))
4948eqcomd 2730 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑃𝑖) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖))
50 elfzom1p1elfzo 12663 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁))
5150adantlr 753 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁))
5242ad2antll 767 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (0..^(♯‘𝑃)) = (0..^𝑁))
5352adantr 472 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (0..^(♯‘𝑃)) = (0..^𝑁))
5451, 53eleqtrrd 2806 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^(♯‘𝑃)))
55 ccatval1 13470 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ (𝑖 + 1) ∈ (0..^(♯‘𝑃))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
5611, 12, 54, 55syl3anc 1439 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
5756eqcomd 2730 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑃‘(𝑖 + 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1)))
5849, 57preq12d 4383 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))})
5958eleq1d 2788 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
6059ralbidva 3087 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
6160biimpcd 239 . . . . . . . . 9 (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
6261adantr 472 . . . . . . . 8 ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
6362expdcom 454 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
64633imp 1101 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
65 fzo0end 12675 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁))
6665adantr 472 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑁 − 1) ∈ (0..^𝑁))
6742eleq2d 2789 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) = 𝑁 → ((𝑁 − 1) ∈ (0..^(♯‘𝑃)) ↔ (𝑁 − 1) ∈ (0..^𝑁)))
6867ad2antll 767 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑁 − 1) ∈ (0..^(♯‘𝑃)) ↔ (𝑁 − 1) ∈ (0..^𝑁)))
6966, 68mpbird 247 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑁 − 1) ∈ (0..^(♯‘𝑃)))
70 ccatval1 13470 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ (𝑁 − 1) ∈ (0..^(♯‘𝑃))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)) = (𝑃‘(𝑁 − 1)))
7110, 6, 69, 70syl3anc 1439 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)) = (𝑃‘(𝑁 − 1)))
72 oveq1 6772 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (♯‘𝑃) → (𝑁 − 1) = ((♯‘𝑃) − 1))
7372fveq2d 6308 . . . . . . . . . . . . . . . . . 18 (𝑁 = (♯‘𝑃) → (𝑃‘(𝑁 − 1)) = (𝑃‘((♯‘𝑃) − 1)))
7473eqcoms 2732 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) = 𝑁 → (𝑃‘(𝑁 − 1)) = (𝑃‘((♯‘𝑃) − 1)))
7574adantl 473 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃‘(𝑁 − 1)) = (𝑃‘((♯‘𝑃) − 1)))
76 lsw 13459 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word (Vtx‘𝐺) → ( lastS ‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
7776adantr 472 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ( lastS ‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
7875, 77eqtr4d 2761 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → (𝑃‘(𝑁 − 1)) = ( lastS ‘𝑃))
7978adantl 473 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘(𝑁 − 1)) = ( lastS ‘𝑃))
8071, 79eqtr2d 2759 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ( lastS ‘𝑃) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)))
81 fveq2 6304 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑃) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑁) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(♯‘𝑃)))
8281eqcoms 2732 . . . . . . . . . . . . . . 15 ((♯‘𝑃) = 𝑁 → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑁) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(♯‘𝑃)))
8382ad2antll 767 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑁) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(♯‘𝑃)))
84 nncn 11141 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
85 1cnd 10169 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 1 ∈ ℂ)
8684, 85npcand 10509 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
8786eqcomd 2730 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 − 1) + 1))
8887fveq2d 6308 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑁) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1)))
8988adantr 472 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑁) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1)))
90 ccatws1ls 13530 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑃‘0) ∈ (Vtx‘𝐺)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(♯‘𝑃)) = (𝑃‘0))
9110, 5, 90syl2anc 696 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(♯‘𝑃)) = (𝑃‘0))
9283, 89, 913eqtr3rd 2767 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (𝑃‘0) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1)))
9380, 92preq12d 4383 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → {( lastS ‘𝑃), (𝑃‘0)} = {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))})
9493eleq1d 2788 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ({( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺)))
9594biimpcd 239 . . . . . . . . . 10 ({( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺)))
9695adantl 473 . . . . . . . . 9 ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺)))
9796expdcom 454 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) → ((∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺)) → {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺))))
98973imp 1101 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺))
99 ovex 6793 . . . . . . . 8 (𝑁 − 1) ∈ V
100 fveq2 6304 . . . . . . . . . 10 (𝑖 = (𝑁 − 1) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)))
101 oveq1 6772 . . . . . . . . . . 11 (𝑖 = (𝑁 − 1) → (𝑖 + 1) = ((𝑁 − 1) + 1))
102101fveq2d 6308 . . . . . . . . . 10 (𝑖 = (𝑁 − 1) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1)))
103100, 102preq12d 4383 . . . . . . . . 9 (𝑖 = (𝑁 − 1) → {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} = {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))})
104103eleq1d 2788 . . . . . . . 8 (𝑖 = (𝑁 − 1) → ({((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺)))
10599, 104ralsn 4329 . . . . . . 7 (∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑁 − 1)), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘((𝑁 − 1) + 1))} ∈ (Edg‘𝐺))
10698, 105sylibr 224 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
10784, 85, 85addsubd 10526 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = ((𝑁 − 1) + 1))
108107oveq2d 6781 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0..^((𝑁 + 1) − 1)) = (0..^((𝑁 − 1) + 1)))
109 nnm1nn0 11447 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
110 elnn0uz 11839 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ‘0))
111109, 110sylib 208 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
112 fzosplitsn 12691 . . . . . . . . . . 11 ((𝑁 − 1) ∈ (ℤ‘0) → (0..^((𝑁 − 1) + 1)) = ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}))
113111, 112syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0..^((𝑁 − 1) + 1)) = ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}))
114108, 113eqtrd 2758 . . . . . . . . 9 (𝑁 ∈ ℕ → (0..^((𝑁 + 1) − 1)) = ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}))
115114raleqdv 3247 . . . . . . . 8 (𝑁 ∈ ℕ → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
116 ralunb 3902 . . . . . . . 8 (∀𝑖 ∈ ((0..^(𝑁 − 1)) ∪ {(𝑁 − 1)}){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
117115, 116syl6bb 276 . . . . . . 7 (𝑁 ∈ ℕ → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1181173ad2ant1 1125 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {(𝑁 − 1)} {((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
11964, 106, 118mpbir2and 995 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
120 ccatlen 13468 . . . . . . . . . . 11 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺)) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
12110, 6, 120syl2anc 696 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
122 id 22 . . . . . . . . . . . 12 ((♯‘𝑃) = 𝑁 → (♯‘𝑃) = 𝑁)
123 s1len 13497 . . . . . . . . . . . . 13 (♯‘⟨“(𝑃‘0)”⟩) = 1
124123a1i 11 . . . . . . . . . . . 12 ((♯‘𝑃) = 𝑁 → (♯‘⟨“(𝑃‘0)”⟩) = 1)
125122, 124oveq12d 6783 . . . . . . . . . . 11 ((♯‘𝑃) = 𝑁 → ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))
126125ad2antll 767 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))
127121, 126eqtrd 2758 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))
1281273adant3 1124 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))
129128oveq1d 6780 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1) = ((𝑁 + 1) − 1))
130129oveq2d 6781 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) = (0..^((𝑁 + 1) − 1)))
131130raleqdv 3247 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((𝑁 + 1) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
132119, 131mpbird 247 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
1333, 9, 1323jca 1379 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅ ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
134 nnnn0 11412 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
135 iswwlksn 26862 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))))
136134, 135syl 17 . . . . 5 (𝑁 ∈ ℕ → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))))
137 eqid 2724 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
138 eqid 2724 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
139137, 138iswwlks 26860 . . . . . . 7 ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (WWalks‘𝐺) ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅ ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
140139a1i 11 . . . . . 6 (𝑁 ∈ ℕ → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (WWalks‘𝐺) ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅ ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
141140anbi1d 743 . . . . 5 (𝑁 ∈ ℕ → (((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (WWalks‘𝐺) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1)) ↔ (((𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅ ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))))
142136, 141bitrd 268 . . . 4 (𝑁 ∈ ℕ → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (((𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅ ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))))
1431423ad2ant1 1125 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (((𝑃 ++ ⟨“(𝑃‘0)”⟩) ≠ ∅ ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)){((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘𝑖), ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑁 + 1))))
144133, 128, 143mpbir2and 995 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺))
145 lswccats1 13531 . . . . 5 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (𝑃‘0) ∈ (Vtx‘𝐺)) → ( lastS ‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑃‘0))
14610, 5, 145syl2anc 696 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ( lastS ‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑃‘0))
147 lbfzo0 12623 . . . . . . . 8 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
148147biimpri 218 . . . . . . 7 (𝑁 ∈ ℕ → 0 ∈ (0..^𝑁))
149148adantr 472 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → 0 ∈ (0..^𝑁))
15042eleq2d 2789 . . . . . . 7 ((♯‘𝑃) = 𝑁 → (0 ∈ (0..^(♯‘𝑃)) ↔ 0 ∈ (0..^𝑁)))
151150ad2antll 767 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → (0 ∈ (0..^(♯‘𝑃)) ↔ 0 ∈ (0..^𝑁)))
152149, 151mpbird 247 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → 0 ∈ (0..^(♯‘𝑃)))
153 ccatval1 13470 . . . . 5 ((𝑃 ∈ Word (Vtx‘𝐺) ∧ ⟨“(𝑃‘0)”⟩ ∈ Word (Vtx‘𝐺) ∧ 0 ∈ (0..^(♯‘𝑃))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) = (𝑃‘0))
15410, 6, 152, 153syl3anc 1439 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) = (𝑃‘0))
155146, 154eqtr4d 2761 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁)) → ( lastS ‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
1561553adant3 1124 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → ( lastS ‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
157 fveq2 6304 . . . 4 (𝑤 = (𝑃 ++ ⟨“(𝑃‘0)”⟩) → ( lastS ‘𝑤) = ( lastS ‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)))
158 fveq1 6303 . . . 4 (𝑤 = (𝑃 ++ ⟨“(𝑃‘0)”⟩) → (𝑤‘0) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
159157, 158eqeq12d 2739 . . 3 (𝑤 = (𝑃 ++ ⟨“(𝑃‘0)”⟩) → (( lastS ‘𝑤) = (𝑤‘0) ↔ ( lastS ‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0)))
160 clwwlkf1o.d . . 3 𝐷 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ( lastS ‘𝑤) = (𝑤‘0)}
161159, 160elrab2 3472 . 2 ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ 𝐷 ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ (𝑁 WWalksN 𝐺) ∧ ( lastS ‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0)))
162144, 156, 161sylanbrc 701 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 𝑁) ∧ (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑃), (𝑃‘0)} ∈ (Edg‘𝐺))) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896  wral 3014  {crab 3018  cun 3678  c0 4023  {csn 4285  {cpr 4287   class class class wbr 4760  cfv 6001  (class class class)co 6765  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   < clt 10187  cmin 10379  cn 11133  0cn0 11405  cz 11490  cuz 11800  ..^cfzo 12580  chash 13232  Word cword 13398   lastS clsw 13399   ++ cconcat 13400  ⟨“cs1 13401  Vtxcvtx 25994  Edgcedg 26059  WWalkscwwlks 26849   WWalksN cwwlksn 26850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-xnn0 11477  df-z 11491  df-uz 11801  df-rp 11947  df-fz 12441  df-fzo 12581  df-hash 13233  df-word 13406  df-lsw 13407  df-concat 13408  df-s1 13409  df-wwlks 26854  df-wwlksn 26855
This theorem is referenced by:  clwwlkfo  27100  clwwlknwwlkncl  27103  clwwlknwwlknclOLD  27104
  Copyright terms: Public domain W3C validator