![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlksf1clwwlklem3OLD | Structured version Visualization version GIF version |
Description: Obsolete as of 24-May-2022. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
clwlksfclwwlk.1 | ⊢ 𝐴 = (1st ‘𝑐) |
clwlksfclwwlk.2 | ⊢ 𝐵 = (2nd ‘𝑐) |
clwlksfclwwlk.c | ⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘𝐴) = 𝑁} |
clwlksfclwwlk.f | ⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 substr 〈0, (♯‘𝐴)〉)) |
Ref | Expression |
---|---|
clwlksf1clwwlklem3OLD | ⊢ (𝑊 ∈ 𝐶 → (2nd ‘𝑊) ∈ Word (Vtx‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlksfclwwlk.1 | . . 3 ⊢ 𝐴 = (1st ‘𝑐) | |
2 | clwlksfclwwlk.2 | . . 3 ⊢ 𝐵 = (2nd ‘𝑐) | |
3 | clwlksfclwwlk.c | . . 3 ⊢ 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (♯‘𝐴) = 𝑁} | |
4 | clwlksfclwwlk.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ (𝐵 substr 〈0, (♯‘𝐴)〉)) | |
5 | 1, 2, 3, 4 | clwlksf1clwwlklem0OLD 27245 | . 2 ⊢ (𝑊 ∈ 𝐶 → (((1st ‘𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd ‘𝑊):(0...(♯‘(1st ‘𝑊)))⟶(Vtx‘𝐺) ∧ ((2nd ‘𝑊)‘0) = ((2nd ‘𝑊)‘(♯‘(1st ‘𝑊)))) ∧ (♯‘(1st ‘𝑊)) = 𝑁)) |
6 | lencl 13520 | . . . . 5 ⊢ ((1st ‘𝑊) ∈ Word dom (iEdg‘𝐺) → (♯‘(1st ‘𝑊)) ∈ ℕ0) | |
7 | nn0z 11602 | . . . . . . . . 9 ⊢ ((♯‘(1st ‘𝑊)) ∈ ℕ0 → (♯‘(1st ‘𝑊)) ∈ ℤ) | |
8 | fzval3 12745 | . . . . . . . . 9 ⊢ ((♯‘(1st ‘𝑊)) ∈ ℤ → (0...(♯‘(1st ‘𝑊))) = (0..^((♯‘(1st ‘𝑊)) + 1))) | |
9 | 7, 8 | syl 17 | . . . . . . . 8 ⊢ ((♯‘(1st ‘𝑊)) ∈ ℕ0 → (0...(♯‘(1st ‘𝑊))) = (0..^((♯‘(1st ‘𝑊)) + 1))) |
10 | 9 | feq2d 6171 | . . . . . . 7 ⊢ ((♯‘(1st ‘𝑊)) ∈ ℕ0 → ((2nd ‘𝑊):(0...(♯‘(1st ‘𝑊)))⟶(Vtx‘𝐺) ↔ (2nd ‘𝑊):(0..^((♯‘(1st ‘𝑊)) + 1))⟶(Vtx‘𝐺))) |
11 | 10 | biimpa 462 | . . . . . 6 ⊢ (((♯‘(1st ‘𝑊)) ∈ ℕ0 ∧ (2nd ‘𝑊):(0...(♯‘(1st ‘𝑊)))⟶(Vtx‘𝐺)) → (2nd ‘𝑊):(0..^((♯‘(1st ‘𝑊)) + 1))⟶(Vtx‘𝐺)) |
12 | iswrdi 13505 | . . . . . 6 ⊢ ((2nd ‘𝑊):(0..^((♯‘(1st ‘𝑊)) + 1))⟶(Vtx‘𝐺) → (2nd ‘𝑊) ∈ Word (Vtx‘𝐺)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (((♯‘(1st ‘𝑊)) ∈ ℕ0 ∧ (2nd ‘𝑊):(0...(♯‘(1st ‘𝑊)))⟶(Vtx‘𝐺)) → (2nd ‘𝑊) ∈ Word (Vtx‘𝐺)) |
14 | 6, 13 | sylan 569 | . . . 4 ⊢ (((1st ‘𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd ‘𝑊):(0...(♯‘(1st ‘𝑊)))⟶(Vtx‘𝐺)) → (2nd ‘𝑊) ∈ Word (Vtx‘𝐺)) |
15 | 14 | 3adant3 1126 | . . 3 ⊢ (((1st ‘𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd ‘𝑊):(0...(♯‘(1st ‘𝑊)))⟶(Vtx‘𝐺) ∧ ((2nd ‘𝑊)‘0) = ((2nd ‘𝑊)‘(♯‘(1st ‘𝑊)))) → (2nd ‘𝑊) ∈ Word (Vtx‘𝐺)) |
16 | 15 | adantr 466 | . 2 ⊢ ((((1st ‘𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd ‘𝑊):(0...(♯‘(1st ‘𝑊)))⟶(Vtx‘𝐺) ∧ ((2nd ‘𝑊)‘0) = ((2nd ‘𝑊)‘(♯‘(1st ‘𝑊)))) ∧ (♯‘(1st ‘𝑊)) = 𝑁) → (2nd ‘𝑊) ∈ Word (Vtx‘𝐺)) |
17 | 5, 16 | syl 17 | 1 ⊢ (𝑊 ∈ 𝐶 → (2nd ‘𝑊) ∈ Word (Vtx‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 {crab 3065 〈cop 4322 ↦ cmpt 4863 dom cdm 5249 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 1st c1st 7313 2nd c2nd 7314 0cc0 10138 1c1 10139 + caddc 10141 ℕ0cn0 11494 ℤcz 11579 ...cfz 12533 ..^cfzo 12673 ♯chash 13321 Word cword 13487 substr csubstr 13491 Vtxcvtx 26095 iEdgciedg 26096 ClWalkscclwlks 26901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-ifp 1050 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-wlks 26730 df-clwlks 26902 |
This theorem is referenced by: clwlksf1clwwlklemOLD 27249 |
Copyright terms: Public domain | W3C validator |