MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksf1clwwlklem Structured version   Visualization version   GIF version

Theorem clwlksf1clwwlklem 27055
Description: Lemma for clwlksf1clwwlk 27056. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1 𝐴 = (1st𝑐)
clwlksfclwwlk.2 𝐵 = (2nd𝑐)
clwlksfclwwlk.c 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
clwlksfclwwlk.f 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
Assertion
Ref Expression
clwlksf1clwwlklem ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
Distinct variable groups:   𝐺,𝑐   𝑁,𝑐   𝑊,𝑐   𝐶,𝑐   𝐹,𝑐   𝑦,𝐺   𝑦,𝑁   𝑈,𝑐,𝑦   𝑦,𝑊
Allowed substitution hints:   𝐴(𝑦,𝑐)   𝐵(𝑦,𝑐)   𝐶(𝑦)   𝐹(𝑦)

Proof of Theorem clwlksf1clwwlklem
StepHypRef Expression
1 clwlksfclwwlk.1 . . . . . . . . . . . 12 𝐴 = (1st𝑐)
2 clwlksfclwwlk.2 . . . . . . . . . . . 12 𝐵 = (2nd𝑐)
3 clwlksfclwwlk.c . . . . . . . . . . . 12 𝐶 = {𝑐 ∈ (ClWalks‘𝐺) ∣ (#‘𝐴) = 𝑁}
4 clwlksfclwwlk.f . . . . . . . . . . . 12 𝐹 = (𝑐𝐶 ↦ (𝐵 substr ⟨0, (#‘𝐴)⟩))
51, 2, 3, 4clwlksf1clwwlklem3 27054 . . . . . . . . . . 11 (𝑊𝐶 → (2nd𝑊) ∈ Word (Vtx‘𝐺))
61, 2, 3, 4clwlksf1clwwlklem3 27054 . . . . . . . . . . 11 (𝑈𝐶 → (2nd𝑈) ∈ Word (Vtx‘𝐺))
75, 6anim12ci 590 . . . . . . . . . 10 ((𝑊𝐶𝑈𝐶) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
87adantr 480 . . . . . . . . 9 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
9 nnnn0 11337 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
109adantl 481 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
111, 2, 3, 4clwlksf1clwwlklem1 27052 . . . . . . . . . . . 12 (𝑈𝐶𝑁 ≤ (#‘(2nd𝑈)))
1211adantl 481 . . . . . . . . . . 11 ((𝑊𝐶𝑈𝐶) → 𝑁 ≤ (#‘(2nd𝑈)))
1312adantr 480 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (#‘(2nd𝑈)))
141, 2, 3, 4clwlksf1clwwlklem1 27052 . . . . . . . . . . . 12 (𝑊𝐶𝑁 ≤ (#‘(2nd𝑊)))
1514adantr 480 . . . . . . . . . . 11 ((𝑊𝐶𝑈𝐶) → 𝑁 ≤ (#‘(2nd𝑊)))
1615adantr 480 . . . . . . . . . 10 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (#‘(2nd𝑊)))
1710, 13, 163jca 1261 . . . . . . . . 9 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
188, 17jca 553 . . . . . . . 8 (((𝑊𝐶𝑈𝐶) ∧ 𝑁 ∈ ℕ) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
1918exp31 629 . . . . . . 7 (𝑊𝐶 → (𝑈𝐶 → (𝑁 ∈ ℕ → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))))
20193imp31 1276 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
2120adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))))
221, 2, 3, 4clwlksfclwwlk1hashn 27046 . . . . . . . . . 10 (𝑈𝐶 → (#‘(1st𝑈)) = 𝑁)
23223ad2ant2 1103 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (#‘(1st𝑈)) = 𝑁)
2423opeq2d 4440 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ⟨0, (#‘(1st𝑈))⟩ = ⟨0, 𝑁⟩)
2524oveq2d 6706 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑈) substr ⟨0, 𝑁⟩))
261, 2, 3, 4clwlksfclwwlk1hashn 27046 . . . . . . . . . 10 (𝑊𝐶 → (#‘(1st𝑊)) = 𝑁)
27263ad2ant3 1104 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (#‘(1st𝑊)) = 𝑁)
2827opeq2d 4440 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ⟨0, (#‘(1st𝑊))⟩ = ⟨0, 𝑁⟩)
2928oveq2d 6706 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩))
3025, 29eqeq12d 2666 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) ↔ ((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩)))
3130biimpa 500 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩))
32 simpl 472 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → ((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)))
33 id 22 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
3433, 33jca 553 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
35343ad2ant1 1102 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))) → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
3635adantl 481 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (𝑁 ∈ ℕ0𝑁 ∈ ℕ0))
37 3simpc 1080 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))) → (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
3837adantl 481 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊))))
39 swrdeq 13490 . . . . . . 7 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) ↔ (𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))))
4032, 36, 38, 39syl3anc 1366 . . . . . 6 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) ↔ (𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))))
41 simpr 476 . . . . . 6 ((𝑁 = 𝑁 ∧ ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
4240, 41syl6bi 243 . . . . 5 ((((2nd𝑈) ∈ Word (Vtx‘𝐺) ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0𝑁 ≤ (#‘(2nd𝑈)) ∧ 𝑁 ≤ (#‘(2nd𝑊)))) → (((2nd𝑈) substr ⟨0, 𝑁⟩) = ((2nd𝑊) substr ⟨0, 𝑁⟩) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
4321, 31, 42sylc 65 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
44 lbfzo0 12547 . . . . . . . . 9 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
4544biimpri 218 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ (0..^𝑁))
46453ad2ant1 1102 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → 0 ∈ (0..^𝑁))
4746adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 0 ∈ (0..^𝑁))
48 fveq2 6229 . . . . . . . 8 (𝑦 = 0 → ((2nd𝑈)‘𝑦) = ((2nd𝑈)‘0))
49 fveq2 6229 . . . . . . . 8 (𝑦 = 0 → ((2nd𝑊)‘𝑦) = ((2nd𝑊)‘0))
5048, 49eqeq12d 2666 . . . . . . 7 (𝑦 = 0 → (((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
5150rspcv 3336 . . . . . 6 (0 ∈ (0..^𝑁) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
5247, 51syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘0) = ((2nd𝑊)‘0)))
531, 2, 3, 4clwlksf1clwwlklem2 27053 . . . . . . . 8 (𝑈𝐶 → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
54533ad2ant2 1103 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
5554adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑈)‘0) = ((2nd𝑈)‘𝑁))
561, 2, 3, 4clwlksf1clwwlklem2 27053 . . . . . . . 8 (𝑊𝐶 → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
57563ad2ant3 1104 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
5857adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ((2nd𝑊)‘0) = ((2nd𝑊)‘𝑁))
5955, 58eqeq12d 2666 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (((2nd𝑈)‘0) = ((2nd𝑊)‘0) ↔ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
6052, 59sylibd 229 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) → ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
6143, 60jcai 558 . . 3 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
62 elnn0uz 11763 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
639, 62sylib 208 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘0))
64633ad2ant1 1102 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → 𝑁 ∈ (ℤ‘0))
6564adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 𝑁 ∈ (ℤ‘0))
66 fzisfzounsn 12620 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
6765, 66syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
6867raleqdv 3174 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
69 simpl1 1084 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → 𝑁 ∈ ℕ)
70 fveq2 6229 . . . . . . 7 (𝑦 = 𝑁 → ((2nd𝑈)‘𝑦) = ((2nd𝑈)‘𝑁))
71 fveq2 6229 . . . . . . 7 (𝑦 = 𝑁 → ((2nd𝑊)‘𝑦) = ((2nd𝑊)‘𝑁))
7270, 71eqeq12d 2666 . . . . . 6 (𝑦 = 𝑁 → (((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁)))
7372ralunsn 4454 . . . . 5 (𝑁 ∈ ℕ → (∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7469, 73syl 17 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ ((0..^𝑁) ∪ {𝑁})((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7568, 74bitrd 268 . . 3 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → (∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ↔ (∀𝑦 ∈ (0..^𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦) ∧ ((2nd𝑈)‘𝑁) = ((2nd𝑊)‘𝑁))))
7661, 75mpbird 247 . 2 (((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) ∧ ((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩)) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦))
7776ex 449 1 ((𝑁 ∈ ℕ ∧ 𝑈𝐶𝑊𝐶) → (((2nd𝑈) substr ⟨0, (#‘(1st𝑈))⟩) = ((2nd𝑊) substr ⟨0, (#‘(1st𝑊))⟩) → ∀𝑦 ∈ (0...𝑁)((2nd𝑈)‘𝑦) = ((2nd𝑊)‘𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  {crab 2945  cun 3605  {csn 4210  cop 4216   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  0cc0 9974  cle 10113  cn 11058  0cn0 11330  cuz 11725  ...cfz 12364  ..^cfzo 12504  #chash 13157  Word cword 13323   substr csubstr 13327  Vtxcvtx 25919  ClWalkscclwlks 26722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-substr 13335  df-wlks 26551  df-clwlks 26723
This theorem is referenced by:  clwlksf1clwwlk  27056
  Copyright terms: Public domain W3C validator