Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknf1oclwwlknlem1 Structured version   Visualization version   GIF version

Theorem clwlknf1oclwwlknlem1 27252
 Description: Lemma 1 for clwlknf1oclwwlkn 27255. (Contributed by AV, 26-May-2022.)
Assertion
Ref Expression
clwlknf1oclwwlknlem1 ((𝐶 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶)))

Proof of Theorem clwlknf1oclwwlknlem1
StepHypRef Expression
1 clwlkwlk 26906 . . 3 (𝐶 ∈ (ClWalks‘𝐺) → 𝐶 ∈ (Walks‘𝐺))
2 wlkcpr 26759 . . . 4 (𝐶 ∈ (Walks‘𝐺) ↔ (1st𝐶)(Walks‘𝐺)(2nd𝐶))
3 eqid 2771 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkpwrd 26748 . . . . . . 7 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (2nd𝐶) ∈ Word (Vtx‘𝐺))
5 lencl 13520 . . . . . . . . 9 ((2nd𝐶) ∈ Word (Vtx‘𝐺) → (♯‘(2nd𝐶)) ∈ ℕ0)
64, 5syl 17 . . . . . . . 8 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (♯‘(2nd𝐶)) ∈ ℕ0)
7 wlklenvm1 26752 . . . . . . . . . . 11 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (♯‘(1st𝐶)) = ((♯‘(2nd𝐶)) − 1))
87breq2d 4799 . . . . . . . . . 10 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ (♯‘(1st𝐶)) ↔ 1 ≤ ((♯‘(2nd𝐶)) − 1)))
9 1red 10261 . . . . . . . . . . . . 13 ((♯‘(2nd𝐶)) ∈ ℕ0 → 1 ∈ ℝ)
10 nn0re 11508 . . . . . . . . . . . . 13 ((♯‘(2nd𝐶)) ∈ ℕ0 → (♯‘(2nd𝐶)) ∈ ℝ)
119, 9, 10leaddsub2d 10835 . . . . . . . . . . . 12 ((♯‘(2nd𝐶)) ∈ ℕ0 → ((1 + 1) ≤ (♯‘(2nd𝐶)) ↔ 1 ≤ ((♯‘(2nd𝐶)) − 1)))
12 1p1e2 11341 . . . . . . . . . . . . . 14 (1 + 1) = 2
1312breq1i 4794 . . . . . . . . . . . . 13 ((1 + 1) ≤ (♯‘(2nd𝐶)) ↔ 2 ≤ (♯‘(2nd𝐶)))
1413biimpi 206 . . . . . . . . . . . 12 ((1 + 1) ≤ (♯‘(2nd𝐶)) → 2 ≤ (♯‘(2nd𝐶)))
1511, 14syl6bir 244 . . . . . . . . . . 11 ((♯‘(2nd𝐶)) ∈ ℕ0 → (1 ≤ ((♯‘(2nd𝐶)) − 1) → 2 ≤ (♯‘(2nd𝐶))))
164, 5, 153syl 18 . . . . . . . . . 10 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ ((♯‘(2nd𝐶)) − 1) → 2 ≤ (♯‘(2nd𝐶))))
178, 16sylbid 230 . . . . . . . . 9 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ (♯‘(1st𝐶)) → 2 ≤ (♯‘(2nd𝐶))))
1817imp 393 . . . . . . . 8 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → 2 ≤ (♯‘(2nd𝐶)))
19 ige2m1fz 12637 . . . . . . . 8 (((♯‘(2nd𝐶)) ∈ ℕ0 ∧ 2 ≤ (♯‘(2nd𝐶))) → ((♯‘(2nd𝐶)) − 1) ∈ (0...(♯‘(2nd𝐶))))
206, 18, 19syl2an2r 664 . . . . . . 7 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → ((♯‘(2nd𝐶)) − 1) ∈ (0...(♯‘(2nd𝐶))))
21 swrd0len 13630 . . . . . . 7 (((2nd𝐶) ∈ Word (Vtx‘𝐺) ∧ ((♯‘(2nd𝐶)) − 1) ∈ (0...(♯‘(2nd𝐶)))) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = ((♯‘(2nd𝐶)) − 1))
224, 20, 21syl2an2r 664 . . . . . 6 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = ((♯‘(2nd𝐶)) − 1))
237eqcomd 2777 . . . . . . 7 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → ((♯‘(2nd𝐶)) − 1) = (♯‘(1st𝐶)))
2423adantr 466 . . . . . 6 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → ((♯‘(2nd𝐶)) − 1) = (♯‘(1st𝐶)))
2522, 24eqtrd 2805 . . . . 5 (((1st𝐶)(Walks‘𝐺)(2nd𝐶) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶)))
2625ex 397 . . . 4 ((1st𝐶)(Walks‘𝐺)(2nd𝐶) → (1 ≤ (♯‘(1st𝐶)) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶))))
272, 26sylbi 207 . . 3 (𝐶 ∈ (Walks‘𝐺) → (1 ≤ (♯‘(1st𝐶)) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶))))
281, 27syl 17 . 2 (𝐶 ∈ (ClWalks‘𝐺) → (1 ≤ (♯‘(1st𝐶)) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶))))
2928imp 393 1 ((𝐶 ∈ (ClWalks‘𝐺) ∧ 1 ≤ (♯‘(1st𝐶))) → (♯‘((2nd𝐶) substr ⟨0, ((♯‘(2nd𝐶)) − 1)⟩)) = (♯‘(1st𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ⟨cop 4323   class class class wbr 4787  ‘cfv 6030  (class class class)co 6796  1st c1st 7317  2nd c2nd 7318  0cc0 10142  1c1 10143   + caddc 10145   ≤ cle 10281   − cmin 10472  2c2 11276  ℕ0cn0 11499  ...cfz 12533  ♯chash 13321  Word cword 13487   substr csubstr 13491  Vtxcvtx 26095  Walkscwlks 26727  ClWalkscclwlks 26901 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-ifp 1050  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-substr 13499  df-wlks 26730  df-clwlks 26902 This theorem is referenced by:  clwlknf1oclwwlkn  27255
 Copyright terms: Public domain W3C validator