Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkl1loop Structured version   Visualization version   GIF version

Theorem clwlkl1loop 26734
 Description: A closed walk of length 1 is a loop. (Contributed by AV, 22-Apr-2021.)
Assertion
Ref Expression
clwlkl1loop ((Fun (iEdg‘𝐺) ∧ 𝐹(ClWalks‘𝐺)𝑃 ∧ (#‘𝐹) = 1) → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺)))

Proof of Theorem clwlkl1loop
StepHypRef Expression
1 isclwlk 26725 . . 3 (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))
2 fveq2 6229 . . . . . . 7 ((#‘𝐹) = 1 → (𝑃‘(#‘𝐹)) = (𝑃‘1))
32eqeq2d 2661 . . . . . 6 ((#‘𝐹) = 1 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) ↔ (𝑃‘0) = (𝑃‘1)))
43anbi2d 740 . . . . 5 ((#‘𝐹) = 1 → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1))))
5 simp2r 1108 . . . . . . 7 (((#‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → (𝑃‘0) = (𝑃‘1))
6 simp3 1083 . . . . . . . 8 (((#‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → Fun (iEdg‘𝐺))
7 simp2l 1107 . . . . . . . 8 (((#‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → 𝐹(Walks‘𝐺)𝑃)
8 simpr 476 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) → (𝑃‘0) = (𝑃‘1))
98anim2i 592 . . . . . . . . 9 (((#‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1))) → ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))
1093adant3 1101 . . . . . . . 8 (((#‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1)))
11 wlkl1loop 26590 . . . . . . . 8 (((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
126, 7, 10, 11syl21anc 1365 . . . . . . 7 (((#‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → {(𝑃‘0)} ∈ (Edg‘𝐺))
135, 12jca 553 . . . . . 6 (((#‘𝐹) = 1 ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) ∧ Fun (iEdg‘𝐺)) → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺)))
14133exp 1283 . . . . 5 ((#‘𝐹) = 1 → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘1)) → (Fun (iEdg‘𝐺) → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺)))))
154, 14sylbid 230 . . . 4 ((#‘𝐹) = 1 → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (Fun (iEdg‘𝐺) → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺)))))
1615com13 88 . . 3 (Fun (iEdg‘𝐺) → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → ((#‘𝐹) = 1 → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺)))))
171, 16syl5bi 232 . 2 (Fun (iEdg‘𝐺) → (𝐹(ClWalks‘𝐺)𝑃 → ((#‘𝐹) = 1 → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺)))))
18173imp 1275 1 ((Fun (iEdg‘𝐺) ∧ 𝐹(ClWalks‘𝐺)𝑃 ∧ (#‘𝐹) = 1) → ((𝑃‘0) = (𝑃‘1) ∧ {(𝑃‘0)} ∈ (Edg‘𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  {csn 4210   class class class wbr 4685  Fun wfun 5920  ‘cfv 5926  0cc0 9974  1c1 9975  #chash 13157  iEdgciedg 25920  Edgcedg 25984  Walkscwlks 26548  ClWalkscclwlks 26722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-edg 25985  df-wlks 26551  df-clwlks 26723 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator