 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkcompbp Structured version   Visualization version   GIF version

Theorem clwlkcompbp 26913
 Description: Basic properties of the components of a closed walk. (Contributed by AV, 23-May-2022.)
Hypotheses
Ref Expression
clwlkcompbp.1 𝐹 = (1st𝑊)
clwlkcompbp.2 𝑃 = (2nd𝑊)
Assertion
Ref Expression
clwlkcompbp (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))

Proof of Theorem clwlkcompbp
StepHypRef Expression
1 clwlkwlk 26906 . . 3 (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺))
2 wlkop 26758 . . 3 (𝑊 ∈ (Walks‘𝐺) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
31, 2syl 17 . 2 (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
4 eleq1 2838 . . . 4 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊 ∈ (ClWalks‘𝐺) ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ (ClWalks‘𝐺)))
5 df-br 4787 . . . 4 ((1st𝑊)(ClWalks‘𝐺)(2nd𝑊) ↔ ⟨(1st𝑊), (2nd𝑊)⟩ ∈ (ClWalks‘𝐺))
64, 5syl6bbr 278 . . 3 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊 ∈ (ClWalks‘𝐺) ↔ (1st𝑊)(ClWalks‘𝐺)(2nd𝑊)))
7 isclwlk 26904 . . . 4 ((1st𝑊)(ClWalks‘𝐺)(2nd𝑊) ↔ ((1st𝑊)(Walks‘𝐺)(2nd𝑊) ∧ ((2nd𝑊)‘0) = ((2nd𝑊)‘(♯‘(1st𝑊)))))
8 clwlkcompbp.1 . . . . . 6 𝐹 = (1st𝑊)
9 clwlkcompbp.2 . . . . . 6 𝑃 = (2nd𝑊)
108, 9breq12i 4795 . . . . 5 (𝐹(Walks‘𝐺)𝑃 ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
119fveq1i 6333 . . . . . 6 (𝑃‘0) = ((2nd𝑊)‘0)
128fveq2i 6335 . . . . . . 7 (♯‘𝐹) = (♯‘(1st𝑊))
139, 12fveq12i 6337 . . . . . 6 (𝑃‘(♯‘𝐹)) = ((2nd𝑊)‘(♯‘(1st𝑊)))
1411, 13eqeq12i 2785 . . . . 5 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ ((2nd𝑊)‘0) = ((2nd𝑊)‘(♯‘(1st𝑊))))
1510, 14anbi12i 612 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ↔ ((1st𝑊)(Walks‘𝐺)(2nd𝑊) ∧ ((2nd𝑊)‘0) = ((2nd𝑊)‘(♯‘(1st𝑊)))))
167, 15sylbb2 228 . . 3 ((1st𝑊)(ClWalks‘𝐺)(2nd𝑊) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
176, 16syl6bi 243 . 2 (𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩ → (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
183, 17mpcom 38 1 (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ⟨cop 4322   class class class wbr 4786  ‘cfv 6031  1st c1st 7313  2nd c2nd 7314  0cc0 10138  ♯chash 13321  Walkscwlks 26727  ClWalkscclwlks 26901 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-ifp 1050  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-wlks 26730  df-clwlks 26902 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator