![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkcompbp | Structured version Visualization version GIF version |
Description: Basic properties of the components of a closed walk. (Contributed by AV, 23-May-2022.) |
Ref | Expression |
---|---|
clwlkcompbp.1 | ⊢ 𝐹 = (1st ‘𝑊) |
clwlkcompbp.2 | ⊢ 𝑃 = (2nd ‘𝑊) |
Ref | Expression |
---|---|
clwlkcompbp | ⊢ (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkwlk 26906 | . . 3 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) | |
2 | wlkop 26758 | . . 3 ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
4 | eleq1 2838 | . . . 4 ⊢ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 → (𝑊 ∈ (ClWalks‘𝐺) ↔ 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∈ (ClWalks‘𝐺))) | |
5 | df-br 4787 | . . . 4 ⊢ ((1st ‘𝑊)(ClWalks‘𝐺)(2nd ‘𝑊) ↔ 〈(1st ‘𝑊), (2nd ‘𝑊)〉 ∈ (ClWalks‘𝐺)) | |
6 | 4, 5 | syl6bbr 278 | . . 3 ⊢ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 → (𝑊 ∈ (ClWalks‘𝐺) ↔ (1st ‘𝑊)(ClWalks‘𝐺)(2nd ‘𝑊))) |
7 | isclwlk 26904 | . . . 4 ⊢ ((1st ‘𝑊)(ClWalks‘𝐺)(2nd ‘𝑊) ↔ ((1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊) ∧ ((2nd ‘𝑊)‘0) = ((2nd ‘𝑊)‘(♯‘(1st ‘𝑊))))) | |
8 | clwlkcompbp.1 | . . . . . 6 ⊢ 𝐹 = (1st ‘𝑊) | |
9 | clwlkcompbp.2 | . . . . . 6 ⊢ 𝑃 = (2nd ‘𝑊) | |
10 | 8, 9 | breq12i 4795 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 ↔ (1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊)) |
11 | 9 | fveq1i 6333 | . . . . . 6 ⊢ (𝑃‘0) = ((2nd ‘𝑊)‘0) |
12 | 8 | fveq2i 6335 | . . . . . . 7 ⊢ (♯‘𝐹) = (♯‘(1st ‘𝑊)) |
13 | 9, 12 | fveq12i 6337 | . . . . . 6 ⊢ (𝑃‘(♯‘𝐹)) = ((2nd ‘𝑊)‘(♯‘(1st ‘𝑊))) |
14 | 11, 13 | eqeq12i 2785 | . . . . 5 ⊢ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ ((2nd ‘𝑊)‘0) = ((2nd ‘𝑊)‘(♯‘(1st ‘𝑊)))) |
15 | 10, 14 | anbi12i 612 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ↔ ((1st ‘𝑊)(Walks‘𝐺)(2nd ‘𝑊) ∧ ((2nd ‘𝑊)‘0) = ((2nd ‘𝑊)‘(♯‘(1st ‘𝑊))))) |
16 | 7, 15 | sylbb2 228 | . . 3 ⊢ ((1st ‘𝑊)(ClWalks‘𝐺)(2nd ‘𝑊) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
17 | 6, 16 | syl6bi 243 | . 2 ⊢ (𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉 → (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) |
18 | 3, 17 | mpcom 38 | 1 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 〈cop 4322 class class class wbr 4786 ‘cfv 6031 1st c1st 7313 2nd c2nd 7314 0cc0 10138 ♯chash 13321 Walkscwlks 26727 ClWalkscclwlks 26901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-ifp 1050 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 df-wlks 26730 df-clwlks 26902 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |