MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2a4 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a4 27144
Description: Lemma 4 for clwlkclwwlklem2a 27145. (Contributed by Alexander van der Vekens, 21-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2a4 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1))) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝐼)) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑥,𝐼
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2a4
StepHypRef Expression
1 fveq2 6332 . . . . . . . . . 10 (𝐼 = ((♯‘𝑃) − 2) → (𝐹𝐼) = (𝐹‘((♯‘𝑃) − 2)))
2 lencl 13519 . . . . . . . . . . 11 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
3 clwlkclwwlklem2.f . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
43clwlkclwwlklem2fv2 27143 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
52, 4sylan 561 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
61, 5sylan9eqr 2826 . . . . . . . . 9 (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐼 = ((♯‘𝑃) − 2)) → (𝐹𝐼) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
76ex 397 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝐼 = ((♯‘𝑃) − 2) → (𝐹𝐼) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})))
873adant1 1123 . . . . . . 7 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝐼 = ((♯‘𝑃) − 2) → (𝐹𝐼) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})))
98ad2antrr 697 . . . . . 6 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (𝐼 = ((♯‘𝑃) − 2) → (𝐹𝐼) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})))
109impcom 394 . . . . 5 ((𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐹𝐼) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
1110fveq2d 6336 . . . 4 ((𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐹𝐼)) = (𝐸‘(𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})))
12 f1f1orn 6289 . . . . . . 7 (𝐸:dom 𝐸1-1𝑅𝐸:dom 𝐸1-1-onto→ran 𝐸)
13123ad2ant1 1126 . . . . . 6 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
1413ad2antrr 697 . . . . 5 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
15 lsw 13547 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
1615eqeq1d 2772 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((lastS‘𝑃) = (𝑃‘0) ↔ (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘0)))
17 nn0cn 11503 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℂ)
18 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) ∈ ℂ → (♯‘𝑃) ∈ ℂ)
19 2cnd 11294 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) ∈ ℂ → 2 ∈ ℂ)
20 1cnd 10257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) ∈ ℂ → 1 ∈ ℂ)
2118, 19, 20subsubd 10621 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑃) ∈ ℂ → ((♯‘𝑃) − (2 − 1)) = (((♯‘𝑃) − 2) + 1))
22 2m1e1 11336 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 − 1) = 1
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) ∈ ℂ → (2 − 1) = 1)
2423oveq2d 6808 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑃) ∈ ℂ → ((♯‘𝑃) − (2 − 1)) = ((♯‘𝑃) − 1))
2521, 24eqtr3d 2806 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑃) ∈ ℂ → (((♯‘𝑃) − 2) + 1) = ((♯‘𝑃) − 1))
262, 17, 253syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 → (((♯‘𝑃) − 2) + 1) = ((♯‘𝑃) − 1))
2726adantr 466 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘0)) → (((♯‘𝑃) − 2) + 1) = ((♯‘𝑃) − 1))
2827fveq2d 6336 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘0)) → (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘((♯‘𝑃) − 1)))
29 eqeq2 2781 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘((♯‘𝑃) − 1)) → ((𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘0) ↔ (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘((♯‘𝑃) − 1))))
3029eqcoms 2778 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘((♯‘𝑃) − 1)) = (𝑃‘0) → ((𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘0) ↔ (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘((♯‘𝑃) − 1))))
3130adantl 467 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘0)) → ((𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘0) ↔ (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘((♯‘𝑃) − 1))))
3228, 31mpbird 247 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘0)) → (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘0))
3332ex 397 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → ((𝑃‘((♯‘𝑃) − 1)) = (𝑃‘0) → (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘0)))
3416, 33sylbid 230 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → ((lastS‘𝑃) = (𝑃‘0) → (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘0)))
35343ad2ant2 1127 . . . . . . . . . . . . . . 15 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((lastS‘𝑃) = (𝑃‘0) → (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘0)))
3635com12 32 . . . . . . . . . . . . . 14 ((lastS‘𝑃) = (𝑃‘0) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘0)))
3736adantr 466 . . . . . . . . . . . . 13 (((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1))) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘0)))
3837impcom 394 . . . . . . . . . . . 12 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) → (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘0))
3938adantr 466 . . . . . . . . . . 11 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ 𝐼 = ((♯‘𝑃) − 2)) → (𝑃‘(((♯‘𝑃) − 2) + 1)) = (𝑃‘0))
4039preq2d 4409 . . . . . . . . . 10 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ 𝐼 = ((♯‘𝑃) − 2)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
41 fveq2 6332 . . . . . . . . . . . . 13 (𝐼 = ((♯‘𝑃) − 2) → (𝑃𝐼) = (𝑃‘((♯‘𝑃) − 2)))
42 fvoveq1 6815 . . . . . . . . . . . . 13 (𝐼 = ((♯‘𝑃) − 2) → (𝑃‘(𝐼 + 1)) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
4341, 42preq12d 4410 . . . . . . . . . . . 12 (𝐼 = ((♯‘𝑃) − 2) → {(𝑃𝐼), (𝑃‘(𝐼 + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
4443eqeq1d 2772 . . . . . . . . . . 11 (𝐼 = ((♯‘𝑃) − 2) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
4544adantl 467 . . . . . . . . . 10 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ 𝐼 = ((♯‘𝑃) − 2)) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
4640, 45mpbird 247 . . . . . . . . 9 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ 𝐼 = ((♯‘𝑃) − 2)) → {(𝑃𝐼), (𝑃‘(𝐼 + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
4746eleq1d 2834 . . . . . . . 8 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ 𝐼 = ((♯‘𝑃) − 2)) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))
4847biimpd 219 . . . . . . 7 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ 𝐼 = ((♯‘𝑃) − 2)) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸 → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))
4948impancom 439 . . . . . 6 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (𝐼 = ((♯‘𝑃) − 2) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))
5049impcom 394 . . . . 5 ((𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)
51 f1ocnvfv2 6675 . . . . 5 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})) = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
5214, 50, 51syl2an2 658 . . . 4 ((𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})) = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
53 eqcom 2777 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘((♯‘𝑃) − 1)) = (𝑃‘0) ↔ (𝑃‘0) = (𝑃‘((♯‘𝑃) − 1)))
5453biimpi 206 . . . . . . . . . . . . . . . . . 18 ((𝑃‘((♯‘𝑃) − 1)) = (𝑃‘0) → (𝑃‘0) = (𝑃‘((♯‘𝑃) − 1)))
55 1e2m1 11337 . . . . . . . . . . . . . . . . . . . . . 22 1 = (2 − 1)
5655a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 → 1 = (2 − 1))
5756oveq2d 6808 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = ((♯‘𝑃) − (2 − 1)))
582, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℂ)
59 2cnd 11294 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 → 2 ∈ ℂ)
60 1cnd 10257 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ)
6158, 59, 60subsubd 10621 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − (2 − 1)) = (((♯‘𝑃) − 2) + 1))
6257, 61eqtrd 2804 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 2) + 1))
6362fveq2d 6336 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Word 𝑉 → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
6454, 63sylan9eqr 2826 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘0)) → (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
6564ex 397 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Word 𝑉 → ((𝑃‘((♯‘𝑃) − 1)) = (𝑃‘0) → (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1))))
6616, 65sylbid 230 . . . . . . . . . . . . . . 15 (𝑃 ∈ Word 𝑉 → ((lastS‘𝑃) = (𝑃‘0) → (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1))))
6766imp 393 . . . . . . . . . . . . . 14 ((𝑃 ∈ Word 𝑉 ∧ (lastS‘𝑃) = (𝑃‘0)) → (𝑃‘0) = (𝑃‘(((♯‘𝑃) − 2) + 1)))
6867preq2d 4409 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ (lastS‘𝑃) = (𝑃‘0)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
6968adantr 466 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ (lastS‘𝑃) = (𝑃‘0)) ∧ 𝐼 = ((♯‘𝑃) − 2)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
7043adantl 467 . . . . . . . . . . . 12 (((𝑃 ∈ Word 𝑉 ∧ (lastS‘𝑃) = (𝑃‘0)) ∧ 𝐼 = ((♯‘𝑃) − 2)) → {(𝑃𝐼), (𝑃‘(𝐼 + 1))} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘(((♯‘𝑃) − 2) + 1))})
7169, 70eqtr4d 2807 . . . . . . . . . . 11 (((𝑃 ∈ Word 𝑉 ∧ (lastS‘𝑃) = (𝑃‘0)) ∧ 𝐼 = ((♯‘𝑃) − 2)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
7271exp31 406 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → ((lastS‘𝑃) = (𝑃‘0) → (𝐼 = ((♯‘𝑃) − 2) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
73723ad2ant2 1127 . . . . . . . . 9 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((lastS‘𝑃) = (𝑃‘0) → (𝐼 = ((♯‘𝑃) − 2) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
7473com12 32 . . . . . . . 8 ((lastS‘𝑃) = (𝑃‘0) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝐼 = ((♯‘𝑃) − 2) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
7574adantr 466 . . . . . . 7 (((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1))) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝐼 = ((♯‘𝑃) − 2) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
7675impcom 394 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) → (𝐼 = ((♯‘𝑃) − 2) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
7776adantr 466 . . . . 5 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (𝐼 = ((♯‘𝑃) − 2) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
7877impcom 394 . . . 4 ((𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
7911, 52, 783eqtrd 2808 . . 3 ((𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐹𝐼)) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
80 simpll 742 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ (𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2))) → (♯‘𝑃) ∈ ℕ0)
81 oveq1 6799 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑃) = 2 → ((♯‘𝑃) − 1) = (2 − 1))
8281, 22syl6eq 2820 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) = 2 → ((♯‘𝑃) − 1) = 1)
8382oveq2d 6808 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑃) = 2 → (0..^((♯‘𝑃) − 1)) = (0..^1))
8483eleq2d 2835 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑃) = 2 → (𝐼 ∈ (0..^((♯‘𝑃) − 1)) ↔ 𝐼 ∈ (0..^1)))
85 oveq1 6799 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑃) = 2 → ((♯‘𝑃) − 2) = (2 − 2))
86 2cn 11292 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℂ
8786subidi 10553 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 − 2) = 0
8885, 87syl6eq 2820 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) = 2 → ((♯‘𝑃) − 2) = 0)
8988eqeq2d 2780 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑃) = 2 → (𝐼 = ((♯‘𝑃) − 2) ↔ 𝐼 = 0))
9089notbid 307 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑃) = 2 → (¬ 𝐼 = ((♯‘𝑃) − 2) ↔ ¬ 𝐼 = 0))
9184, 90anbi12d 608 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑃) = 2 → ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) ↔ (𝐼 ∈ (0..^1) ∧ ¬ 𝐼 = 0)))
92 elsni 4331 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐼 ∈ {0} → 𝐼 = 0)
9392pm2.24d 148 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐼 ∈ {0} → (¬ 𝐼 = 0 → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2))))
94 fzo01 12757 . . . . . . . . . . . . . . . . . . . . . . 23 (0..^1) = {0}
9593, 94eleq2s 2867 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼 ∈ (0..^1) → (¬ 𝐼 = 0 → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2))))
9695imp 393 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ (0..^1) ∧ ¬ 𝐼 = 0) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))
9791, 96syl6bi 243 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑃) = 2 → ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2))))
9897adantld 474 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑃) = 2 → ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ (𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2))) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2))))
99 df-ne 2943 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑃) ≠ 2 ↔ ¬ (♯‘𝑃) = 2)
100 2re 11291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℝ
101100a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ∈ ℝ)
102 nn0re 11502 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
103102adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℝ)
104 simpr 471 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
105101, 103, 104leltned 10391 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (2 < (♯‘𝑃) ↔ (♯‘𝑃) ≠ 2))
106 elfzo0 12716 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐼 ∈ (0..^((♯‘𝑃) − 1)) ↔ (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 1)))
107 simp-4l 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) ∧ 2 < (♯‘𝑃)) ∧ 𝐼 < ((♯‘𝑃) − 1)) → 𝐼 ∈ ℕ0)
108 nn0z 11601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
109 2z 11610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2 ∈ ℤ
110109a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
111108, 110zsubcld 11688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
112111adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((♯‘𝑃) ∈ ℕ0 ∧ 2 < (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℤ)
113100a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
114113, 102posdifd 10815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((♯‘𝑃) ∈ ℕ0 → (2 < (♯‘𝑃) ↔ 0 < ((♯‘𝑃) − 2)))
115114biimpa 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((♯‘𝑃) ∈ ℕ0 ∧ 2 < (♯‘𝑃)) → 0 < ((♯‘𝑃) − 2))
116 elnnz 11588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((♯‘𝑃) − 2) ∈ ℕ ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 < ((♯‘𝑃) − 2)))
117112, 115, 116sylanbrc 564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((♯‘𝑃) ∈ ℕ0 ∧ 2 < (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℕ)
118117ad5ant24 1222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) ∧ 2 < (♯‘𝑃)) ∧ 𝐼 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) − 2) ∈ ℕ)
119 nn0z 11601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
120 peano2zm 11621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
121108, 120syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ)
122 zltlem1 11631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐼 ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ) → (𝐼 < ((♯‘𝑃) − 1) ↔ 𝐼 ≤ (((♯‘𝑃) − 1) − 1)))
123119, 121, 122syl2an 575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝐼 < ((♯‘𝑃) − 1) ↔ 𝐼 ≤ (((♯‘𝑃) − 1) − 1)))
12417adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (♯‘𝑃) ∈ ℂ)
125 1cnd 10257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → 1 ∈ ℂ)
126124, 125, 125subsub4d 10624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − (1 + 1)))
127 1p1e2 11335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (1 + 1) = 2
128127a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (1 + 1) = 2)
129128oveq2d 6808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → ((♯‘𝑃) − (1 + 1)) = ((♯‘𝑃) − 2))
130126, 129eqtrd 2804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
131130breq2d 4796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝐼 ≤ (((♯‘𝑃) − 1) − 1) ↔ 𝐼 ≤ ((♯‘𝑃) − 2)))
132123, 131bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝐼 < ((♯‘𝑃) − 1) ↔ 𝐼 ≤ ((♯‘𝑃) − 2)))
133 necom 2995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((♯‘𝑃) − 2) ≠ 𝐼𝐼 ≠ ((♯‘𝑃) − 2))
134 df-ne 2943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐼 ≠ ((♯‘𝑃) − 2) ↔ ¬ 𝐼 = ((♯‘𝑃) − 2))
135133, 134bitr2i 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝐼 = ((♯‘𝑃) − 2) ↔ ((♯‘𝑃) − 2) ≠ 𝐼)
136 nn0re 11502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
137136ad2antrr 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((♯‘𝑃) − 2)) → 𝐼 ∈ ℝ)
138102, 113resubcld 10659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℝ)
139138ad2antlr 698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((♯‘𝑃) − 2)) → ((♯‘𝑃) − 2) ∈ ℝ)
140 simpr 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((♯‘𝑃) − 2)) → 𝐼 ≤ ((♯‘𝑃) − 2))
141 leltne 10328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝐼 ∈ ℝ ∧ ((♯‘𝑃) − 2) ∈ ℝ ∧ 𝐼 ≤ ((♯‘𝑃) − 2)) → (𝐼 < ((♯‘𝑃) − 2) ↔ ((♯‘𝑃) − 2) ≠ 𝐼))
142141bicomd 213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐼 ∈ ℝ ∧ ((♯‘𝑃) − 2) ∈ ℝ ∧ 𝐼 ≤ ((♯‘𝑃) − 2)) → (((♯‘𝑃) − 2) ≠ 𝐼𝐼 < ((♯‘𝑃) − 2)))
143137, 139, 140, 142syl3anc 1475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((♯‘𝑃) − 2)) → (((♯‘𝑃) − 2) ≠ 𝐼𝐼 < ((♯‘𝑃) − 2)))
144143biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((♯‘𝑃) − 2)) → (((♯‘𝑃) − 2) ≠ 𝐼𝐼 < ((♯‘𝑃) − 2)))
145135, 144syl5bi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ 𝐼 ≤ ((♯‘𝑃) − 2)) → (¬ 𝐼 = ((♯‘𝑃) − 2) → 𝐼 < ((♯‘𝑃) − 2)))
146145ex 397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝐼 ≤ ((♯‘𝑃) − 2) → (¬ 𝐼 = ((♯‘𝑃) − 2) → 𝐼 < ((♯‘𝑃) − 2))))
147132, 146sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝐼 < ((♯‘𝑃) − 1) → (¬ 𝐼 = ((♯‘𝑃) − 2) → 𝐼 < ((♯‘𝑃) − 2))))
148147com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (¬ 𝐼 = ((♯‘𝑃) − 2) → (𝐼 < ((♯‘𝑃) − 1) → 𝐼 < ((♯‘𝑃) − 2))))
149148imp 393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → (𝐼 < ((♯‘𝑃) − 1) → 𝐼 < ((♯‘𝑃) − 2)))
150149adantr 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) ∧ 2 < (♯‘𝑃)) → (𝐼 < ((♯‘𝑃) − 1) → 𝐼 < ((♯‘𝑃) − 2)))
151150imp 393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) ∧ 2 < (♯‘𝑃)) ∧ 𝐼 < ((♯‘𝑃) − 1)) → 𝐼 < ((♯‘𝑃) − 2))
152107, 118, 1513jca 1121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) ∧ 2 < (♯‘𝑃)) ∧ 𝐼 < ((♯‘𝑃) − 1)) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))
153152ex 397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) ∧ 2 < (♯‘𝑃)) → (𝐼 < ((♯‘𝑃) − 1) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2))))
154153exp41 421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐼 ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (¬ 𝐼 = ((♯‘𝑃) − 2) → (2 < (♯‘𝑃) → (𝐼 < ((♯‘𝑃) − 1) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))))))
155154com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐼 ∈ ℕ0 → (𝐼 < ((♯‘𝑃) − 1) → (¬ 𝐼 = ((♯‘𝑃) − 2) → (2 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))))))
156155imp 393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐼 ∈ ℕ0𝐼 < ((♯‘𝑃) − 1)) → (¬ 𝐼 = ((♯‘𝑃) − 2) → (2 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2))))))
1571563adant2 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 1)) → (¬ 𝐼 = ((♯‘𝑃) − 2) → (2 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2))))))
158106, 157sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼 ∈ (0..^((♯‘𝑃) − 1)) → (¬ 𝐼 = ((♯‘𝑃) − 2) → (2 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2))))))
159158imp 393 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → (2 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))))
160159com13 88 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑃) ∈ ℕ0 → (2 < (♯‘𝑃) → ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))))
161160adantr 466 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (2 < (♯‘𝑃) → ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))))
162105, 161sylbird 250 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) ≠ 2 → ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))))
16399, 162syl5bir 233 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (¬ (♯‘𝑃) = 2 → ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))))
164163com23 86 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → (¬ (♯‘𝑃) = 2 → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))))
165164imp 393 . . . . . . . . . . . . . . . . . . . 20 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ (𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2))) → (¬ (♯‘𝑃) = 2 → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2))))
166165com12 32 . . . . . . . . . . . . . . . . . . 19 (¬ (♯‘𝑃) = 2 → ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ (𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2))) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2))))
16798, 166pm2.61i 176 . . . . . . . . . . . . . . . . . 18 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ (𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2))) → (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))
168 elfzo0 12716 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (0..^((♯‘𝑃) − 2)) ↔ (𝐼 ∈ ℕ0 ∧ ((♯‘𝑃) − 2) ∈ ℕ ∧ 𝐼 < ((♯‘𝑃) − 2)))
169167, 168sylibr 224 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ (𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2))) → 𝐼 ∈ (0..^((♯‘𝑃) − 2)))
17080, 169jca 495 . . . . . . . . . . . . . . . 16 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ (𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2))) → ((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))))
171170exp31 406 . . . . . . . . . . . . . . 15 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → ((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))))))
1722, 171syl 17 . . . . . . . . . . . . . 14 (𝑃 ∈ Word 𝑉 → (2 ≤ (♯‘𝑃) → ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → ((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))))))
173172imp 393 . . . . . . . . . . . . 13 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → ((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2)))))
1741733adant1 1123 . . . . . . . . . . . 12 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝐼 ∈ (0..^((♯‘𝑃) − 1)) ∧ ¬ 𝐼 = ((♯‘𝑃) − 2)) → ((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2)))))
175174expd 400 . . . . . . . . . . 11 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝐼 ∈ (0..^((♯‘𝑃) − 1)) → (¬ 𝐼 = ((♯‘𝑃) − 2) → ((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))))))
176175com12 32 . . . . . . . . . 10 (𝐼 ∈ (0..^((♯‘𝑃) − 1)) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (¬ 𝐼 = ((♯‘𝑃) − 2) → ((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))))))
177176adantl 467 . . . . . . . . 9 (((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1))) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (¬ 𝐼 = ((♯‘𝑃) − 2) → ((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))))))
178177impcom 394 . . . . . . . 8 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) → (¬ 𝐼 = ((♯‘𝑃) − 2) → ((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2)))))
179178adantr 466 . . . . . . 7 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (¬ 𝐼 = ((♯‘𝑃) − 2) → ((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2)))))
180179impcom 394 . . . . . 6 ((¬ 𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → ((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))))
1813clwlkclwwlklem2fv1 27142 . . . . . 6 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
182180, 181syl 17 . . . . 5 ((¬ 𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
183182fveq2d 6336 . . . 4 ((¬ 𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐹𝐼)) = (𝐸‘(𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
184 simprr 748 . . . . 5 ((¬ 𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)
185 f1ocnvfv2 6675 . . . . 5 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))})) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
18614, 184, 185syl2an2 658 . . . 4 ((¬ 𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))})) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
187183, 186eqtrd 2804 . . 3 ((¬ 𝐼 = ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸)) → (𝐸‘(𝐹𝐼)) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
18879, 187pm2.61ian 795 . 2 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1)))) ∧ {(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸) → (𝐸‘(𝐹𝐼)) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
189188exp31 406 1 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 1))) → ({(𝑃𝐼), (𝑃‘(𝐼 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝐼)) = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942  ifcif 4223  {csn 4314  {cpr 4316   class class class wbr 4784  cmpt 4861  ccnv 5248  dom cdm 5249  ran crn 5250  1-1wf1 6028  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137  1c1 10138   + caddc 10140   < clt 10275  cle 10276  cmin 10467  cn 11221  2c2 11271  0cn0 11493  cz 11578  ..^cfzo 12672  chash 13320  Word cword 13486  lastSclsw 13487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-lsw 13495
This theorem is referenced by:  clwlkclwwlklem2a  27145
  Copyright terms: Public domain W3C validator