MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2a Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a 26964
Description: Lemma for clwlkclwwlklem2 26966. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ if(𝑥 < ((#‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2a ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑖,𝐸   𝑖,𝐹   𝑃,𝑖   𝑅,𝑖,𝑥   𝑖,𝑉
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2a
StepHypRef Expression
1 simpl 472 . . . . . . . . . 10 ((𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → 𝑥 < ((#‘𝑃) − 2))
2 f1f1orn 6186 . . . . . . . . . . . . . 14 (𝐸:dom 𝐸1-1𝑅𝐸:dom 𝐸1-1-onto→ran 𝐸)
323ad2ant1 1102 . . . . . . . . . . . . 13 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
43adantr 480 . . . . . . . . . . . 12 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
54ad2antrl 764 . . . . . . . . . . 11 ((𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
6 elfzo0 12548 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↔ (𝑥 ∈ ℕ0 ∧ ((#‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((#‘𝑃) − 1)))
7 lencl 13356 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ Word 𝑉 → (#‘𝑃) ∈ ℕ0)
8 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → 𝑥 ∈ ℕ0)
98adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ (𝑥 < ((#‘𝑃) − 2) ∧ 2 ≤ (#‘𝑃))) → 𝑥 ∈ ℕ0)
10 elnn0z 11428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥))
11 0red 10079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑥 ∈ ℤ ∧ (#‘𝑃) ∈ ℕ0) → 0 ∈ ℝ)
12 zre 11419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
1312adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑥 ∈ ℤ ∧ (#‘𝑃) ∈ ℕ0) → 𝑥 ∈ ℝ)
14 nn0re 11339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((#‘𝑃) ∈ ℕ0 → (#‘𝑃) ∈ ℝ)
15 2re 11128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((#‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
1714, 16resubcld 10496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 2) ∈ ℝ)
1817adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑥 ∈ ℤ ∧ (#‘𝑃) ∈ ℕ0) → ((#‘𝑃) − 2) ∈ ℝ)
19 lelttr 10166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((#‘𝑃) − 2) ∈ ℝ) → ((0 ≤ 𝑥𝑥 < ((#‘𝑃) − 2)) → 0 < ((#‘𝑃) − 2)))
2011, 13, 18, 19syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑥 ∈ ℤ ∧ (#‘𝑃) ∈ ℕ0) → ((0 ≤ 𝑥𝑥 < ((#‘𝑃) − 2)) → 0 < ((#‘𝑃) − 2)))
21 nn0z 11438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((#‘𝑃) ∈ ℕ0 → (#‘𝑃) ∈ ℤ)
22 2z 11447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2 ∈ ℤ
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((#‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
2421, 23zsubcld 11525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 2) ∈ ℤ)
2524anim1i 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((#‘𝑃) ∈ ℕ0 ∧ 0 < ((#‘𝑃) − 2)) → (((#‘𝑃) − 2) ∈ ℤ ∧ 0 < ((#‘𝑃) − 2)))
26 elnnz 11425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((#‘𝑃) − 2) ∈ ℕ ↔ (((#‘𝑃) − 2) ∈ ℤ ∧ 0 < ((#‘𝑃) − 2)))
2725, 26sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((#‘𝑃) ∈ ℕ0 ∧ 0 < ((#‘𝑃) − 2)) → ((#‘𝑃) − 2) ∈ ℕ)
28 nn0cn 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((#‘𝑃) ∈ ℕ0 → (#‘𝑃) ∈ ℂ)
29 peano2cnm 10385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((#‘𝑃) ∈ ℂ → ((#‘𝑃) − 1) ∈ ℂ)
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 1) ∈ ℂ)
3130subid1d 10419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((#‘𝑃) ∈ ℕ0 → (((#‘𝑃) − 1) − 0) = ((#‘𝑃) − 1))
3231oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((#‘𝑃) ∈ ℕ0 → ((((#‘𝑃) − 1) − 0) − 1) = (((#‘𝑃) − 1) − 1))
33 1cnd 10094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((#‘𝑃) ∈ ℕ0 → 1 ∈ ℂ)
3428, 33, 33subsub4d 10461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((#‘𝑃) ∈ ℕ0 → (((#‘𝑃) − 1) − 1) = ((#‘𝑃) − (1 + 1)))
35 1p1e2 11172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (1 + 1) = 2
3635a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((#‘𝑃) ∈ ℕ0 → (1 + 1) = 2)
3736oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − (1 + 1)) = ((#‘𝑃) − 2))
3834, 37eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((#‘𝑃) ∈ ℕ0 → (((#‘𝑃) − 1) − 1) = ((#‘𝑃) − 2))
3932, 38eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((#‘𝑃) ∈ ℕ0 → ((((#‘𝑃) − 1) − 0) − 1) = ((#‘𝑃) − 2))
4039eleq1d 2715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((#‘𝑃) ∈ ℕ0 → (((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ ↔ ((#‘𝑃) − 2) ∈ ℕ))
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((#‘𝑃) ∈ ℕ0 ∧ 0 < ((#‘𝑃) − 2)) → (((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ ↔ ((#‘𝑃) − 2) ∈ ℕ))
4227, 41mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((#‘𝑃) ∈ ℕ0 ∧ 0 < ((#‘𝑃) − 2)) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ)
4342ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((#‘𝑃) ∈ ℕ0 → (0 < ((#‘𝑃) − 2) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ))
4443adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑥 ∈ ℤ ∧ (#‘𝑃) ∈ ℕ0) → (0 < ((#‘𝑃) − 2) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ))
4520, 44syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑥 ∈ ℤ ∧ (#‘𝑃) ∈ ℕ0) → ((0 ≤ 𝑥𝑥 < ((#‘𝑃) − 2)) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ))
4645exp4b 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ ℤ → ((#‘𝑃) ∈ ℕ0 → (0 ≤ 𝑥 → (𝑥 < ((#‘𝑃) − 2) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ))))
4746com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ ℤ → (0 ≤ 𝑥 → ((#‘𝑃) ∈ ℕ0 → (𝑥 < ((#‘𝑃) − 2) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ))))
4847imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → ((#‘𝑃) ∈ ℕ0 → (𝑥 < ((#‘𝑃) − 2) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ)))
4910, 48sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ℕ0 → ((#‘𝑃) ∈ ℕ0 → (𝑥 < ((#‘𝑃) − 2) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ)))
5049imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝑥 < ((#‘𝑃) − 2) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ))
5150com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 < ((#‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ))
5251adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 < ((#‘𝑃) − 2) ∧ 2 ≤ (#‘𝑃)) → ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ))
5352impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ (𝑥 < ((#‘𝑃) − 2) ∧ 2 ≤ (#‘𝑃))) → ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ)
54 df-2 11117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 = (1 + 1)
5554a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((#‘𝑃) ∈ ℕ0 → 2 = (1 + 1))
5655oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 2) = ((#‘𝑃) − (1 + 1)))
5731eqcomd 2657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 1) = (((#‘𝑃) − 1) − 0))
5857oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((#‘𝑃) ∈ ℕ0 → (((#‘𝑃) − 1) − 1) = ((((#‘𝑃) − 1) − 0) − 1))
5956, 34, 583eqtr2d 2691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 2) = ((((#‘𝑃) − 1) − 0) − 1))
6059adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → ((#‘𝑃) − 2) = ((((#‘𝑃) − 1) − 0) − 1))
6160breq2d 4697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝑥 < ((#‘𝑃) − 2) ↔ 𝑥 < ((((#‘𝑃) − 1) − 0) − 1)))
6261biimpcd 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 < ((#‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → 𝑥 < ((((#‘𝑃) − 1) − 0) − 1)))
6362adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 < ((#‘𝑃) − 2) ∧ 2 ≤ (#‘𝑃)) → ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → 𝑥 < ((((#‘𝑃) − 1) − 0) − 1)))
6463impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ (𝑥 < ((#‘𝑃) − 2) ∧ 2 ≤ (#‘𝑃))) → 𝑥 < ((((#‘𝑃) − 1) − 0) − 1))
65 elfzo0 12548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)) ↔ (𝑥 ∈ ℕ0 ∧ ((((#‘𝑃) − 1) − 0) − 1) ∈ ℕ ∧ 𝑥 < ((((#‘𝑃) − 1) − 0) − 1)))
669, 53, 64, 65syl3anbrc 1265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) ∧ (𝑥 < ((#‘𝑃) − 2) ∧ 2 ≤ (#‘𝑃))) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)))
6766exp32 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝑥 < ((#‘𝑃) − 2) → (2 ≤ (#‘𝑃) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)))))
6867a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝑥 < ((#‘𝑃) − 1) → (𝑥 < ((#‘𝑃) − 2) → (2 ≤ (#‘𝑃) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1))))))
6968com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (2 ≤ (#‘𝑃) → (𝑥 < ((#‘𝑃) − 2) → (𝑥 < ((#‘𝑃) − 1) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1))))))
7069ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℕ0 → ((#‘𝑃) ∈ ℕ0 → (2 ≤ (#‘𝑃) → (𝑥 < ((#‘𝑃) − 2) → (𝑥 < ((#‘𝑃) − 1) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)))))))
7170com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℕ0 → (𝑥 < ((#‘𝑃) − 1) → (2 ≤ (#‘𝑃) → (𝑥 < ((#‘𝑃) − 2) → ((#‘𝑃) ∈ ℕ0𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)))))))
7271imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) → (2 ≤ (#‘𝑃) → (𝑥 < ((#‘𝑃) − 2) → ((#‘𝑃) ∈ ℕ0𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1))))))
73723adant2 1100 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ ℕ0 ∧ ((#‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((#‘𝑃) − 1)) → (2 ≤ (#‘𝑃) → (𝑥 < ((#‘𝑃) − 2) → ((#‘𝑃) ∈ ℕ0𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1))))))
7473com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝑃) ∈ ℕ0 → (2 ≤ (#‘𝑃) → (𝑥 < ((#‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ ((#‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((#‘𝑃) − 1)) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1))))))
757, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ Word 𝑉 → (2 ≤ (#‘𝑃) → (𝑥 < ((#‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ ((#‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((#‘𝑃) − 1)) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1))))))
7675imp 444 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑥 < ((#‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ ((#‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((#‘𝑃) − 1)) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)))))
77763adant1 1099 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑥 < ((#‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ ((#‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((#‘𝑃) − 1)) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)))))
786, 77syl7bi 245 . . . . . . . . . . . . . . . . . . . 20 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑥 < ((#‘𝑃) − 2) → (𝑥 ∈ (0..^((#‘𝑃) − 1)) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)))))
7978com13 88 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0..^((#‘𝑃) − 1)) → (𝑥 < ((#‘𝑃) − 2) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)))))
8079imp31 447 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (0..^((#‘𝑃) − 1)) ∧ 𝑥 < ((#‘𝑃) − 2)) ∧ (𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃))) → 𝑥 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)))
81 fveq2 6229 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑥 → (𝑃𝑖) = (𝑃𝑥))
82 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑥 → (𝑖 + 1) = (𝑥 + 1))
8382fveq2d 6233 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑥 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑥 + 1)))
8481, 83preq12d 4308 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑥 → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
8584eleq1d 2715 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑥 → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
8685adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ (0..^((#‘𝑃) − 1)) ∧ 𝑥 < ((#‘𝑃) − 2)) ∧ (𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃))) ∧ 𝑖 = 𝑥) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
8780, 86rspcdv 3343 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (0..^((#‘𝑃) − 1)) ∧ 𝑥 < ((#‘𝑃) − 2)) ∧ (𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃))) → (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
8887ex 449 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (0..^((#‘𝑃) − 1)) ∧ 𝑥 < ((#‘𝑃) − 2)) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)))
8988com13 88 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((𝑥 ∈ (0..^((#‘𝑃) − 1)) ∧ 𝑥 < ((#‘𝑃) − 2)) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)))
9089ad2antrl 764 . . . . . . . . . . . . . 14 ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((𝑥 ∈ (0..^((#‘𝑃) − 1)) ∧ 𝑥 < ((#‘𝑃) − 2)) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)))
9190impcom 445 . . . . . . . . . . . . 13 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ((𝑥 ∈ (0..^((#‘𝑃) − 1)) ∧ 𝑥 < ((#‘𝑃) − 2)) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
9291expdimp 452 . . . . . . . . . . . 12 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1))) → (𝑥 < ((#‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
9392impcom 445 . . . . . . . . . . 11 ((𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)
94 f1ocnvdm 6580 . . . . . . . . . . 11 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸) → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸)
955, 93, 94syl2anc 694 . . . . . . . . . 10 ((𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸)
961, 95jca 553 . . . . . . . . 9 ((𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → (𝑥 < ((#‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸))
9796orcd 406 . . . . . . . 8 ((𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → ((𝑥 < ((#‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸) ∨ (¬ 𝑥 < ((#‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)))
98 simpl 472 . . . . . . . . . 10 ((¬ 𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → ¬ 𝑥 < ((#‘𝑃) − 2))
994ad2antrl 764 . . . . . . . . . . 11 ((¬ 𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
100 nn0z 11438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
101 peano2zm 11458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((#‘𝑃) ∈ ℤ → ((#‘𝑃) − 1) ∈ ℤ)
10221, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 1) ∈ ℤ)
103100, 102anim12i 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝑥 ∈ ℤ ∧ ((#‘𝑃) − 1) ∈ ℤ))
104 zltlem1 11468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 ∈ ℤ ∧ ((#‘𝑃) − 1) ∈ ℤ) → (𝑥 < ((#‘𝑃) − 1) ↔ 𝑥 ≤ (((#‘𝑃) − 1) − 1)))
105103, 104syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝑥 < ((#‘𝑃) − 1) ↔ 𝑥 ≤ (((#‘𝑃) − 1) − 1)))
10638adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (((#‘𝑃) − 1) − 1) = ((#‘𝑃) − 2))
107106breq2d 4697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝑥 ≤ (((#‘𝑃) − 1) − 1) ↔ 𝑥 ≤ ((#‘𝑃) − 2)))
108107biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝑥 ≤ (((#‘𝑃) − 1) − 1) → 𝑥 ≤ ((#‘𝑃) − 2)))
109105, 108sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℕ0 ∧ (#‘𝑃) ∈ ℕ0) → (𝑥 < ((#‘𝑃) − 1) → 𝑥 ≤ ((#‘𝑃) − 2)))
110109impancom 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) → ((#‘𝑃) ∈ ℕ0𝑥 ≤ ((#‘𝑃) − 2)))
111110imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) ∧ (#‘𝑃) ∈ ℕ0) → 𝑥 ≤ ((#‘𝑃) − 2))
112 nn0re 11339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
113112adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) → 𝑥 ∈ ℝ)
114113, 17anim12i 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) ∧ (#‘𝑃) ∈ ℕ0) → (𝑥 ∈ ℝ ∧ ((#‘𝑃) − 2) ∈ ℝ))
115 lenlt 10154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ℝ ∧ ((#‘𝑃) − 2) ∈ ℝ) → (𝑥 ≤ ((#‘𝑃) − 2) ↔ ¬ ((#‘𝑃) − 2) < 𝑥))
116114, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) ∧ (#‘𝑃) ∈ ℕ0) → (𝑥 ≤ ((#‘𝑃) − 2) ↔ ¬ ((#‘𝑃) − 2) < 𝑥))
117111, 116mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) ∧ (#‘𝑃) ∈ ℕ0) → ¬ ((#‘𝑃) − 2) < 𝑥)
118117anim1i 591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) ∧ (#‘𝑃) ∈ ℕ0) ∧ ¬ 𝑥 < ((#‘𝑃) − 2)) → (¬ ((#‘𝑃) − 2) < 𝑥 ∧ ¬ 𝑥 < ((#‘𝑃) − 2)))
119114ancomd 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) ∧ (#‘𝑃) ∈ ℕ0) → (((#‘𝑃) − 2) ∈ ℝ ∧ 𝑥 ∈ ℝ))
120119adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) ∧ (#‘𝑃) ∈ ℕ0) ∧ ¬ 𝑥 < ((#‘𝑃) − 2)) → (((#‘𝑃) − 2) ∈ ℝ ∧ 𝑥 ∈ ℝ))
121 lttri3 10159 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((#‘𝑃) − 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((#‘𝑃) − 2) = 𝑥 ↔ (¬ ((#‘𝑃) − 2) < 𝑥 ∧ ¬ 𝑥 < ((#‘𝑃) − 2))))
122120, 121syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) ∧ (#‘𝑃) ∈ ℕ0) ∧ ¬ 𝑥 < ((#‘𝑃) − 2)) → (((#‘𝑃) − 2) = 𝑥 ↔ (¬ ((#‘𝑃) − 2) < 𝑥 ∧ ¬ 𝑥 < ((#‘𝑃) − 2))))
123118, 122mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) ∧ (#‘𝑃) ∈ ℕ0) ∧ ¬ 𝑥 < ((#‘𝑃) − 2)) → ((#‘𝑃) − 2) = 𝑥)
124123exp31 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) → ((#‘𝑃) ∈ ℕ0 → (¬ 𝑥 < ((#‘𝑃) − 2) → ((#‘𝑃) − 2) = 𝑥)))
125124com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0𝑥 < ((#‘𝑃) − 1)) → (¬ 𝑥 < ((#‘𝑃) − 2) → ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 2) = 𝑥)))
1261253adant2 1100 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℕ0 ∧ ((#‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((#‘𝑃) − 1)) → (¬ 𝑥 < ((#‘𝑃) − 2) → ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 2) = 𝑥)))
1276, 126sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (0..^((#‘𝑃) − 1)) → (¬ 𝑥 < ((#‘𝑃) − 2) → ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 2) = 𝑥)))
128127impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝑥 < ((#‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1))) → ((#‘𝑃) ∈ ℕ0 → ((#‘𝑃) − 2) = 𝑥))
1297, 128syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ Word 𝑉 → ((¬ 𝑥 < ((#‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1))) → ((#‘𝑃) − 2) = 𝑥))
1301293ad2ant2 1103 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((¬ 𝑥 < ((#‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1))) → ((#‘𝑃) − 2) = 𝑥))
131130imp 444 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (¬ 𝑥 < ((#‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → ((#‘𝑃) − 2) = 𝑥)
132131fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (¬ 𝑥 < ((#‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → (𝑃‘((#‘𝑃) − 2)) = (𝑃𝑥))
133132preq1d 4306 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (¬ 𝑥 < ((#‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝑥), (𝑃‘0)})
134133eleq1d 2715 . . . . . . . . . . . . . . . . . . . 20 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (¬ 𝑥 < ((#‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → ({(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))
135134biimpd 219 . . . . . . . . . . . . . . . . . . 19 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (¬ 𝑥 < ((#‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → ({(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))
136135exp32 630 . . . . . . . . . . . . . . . . . 18 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (¬ 𝑥 < ((#‘𝑃) − 2) → (𝑥 ∈ (0..^((#‘𝑃) − 1)) → ({(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
137136com12 32 . . . . . . . . . . . . . . . . 17 𝑥 < ((#‘𝑃) − 2) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑥 ∈ (0..^((#‘𝑃) − 1)) → ({(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
138137com14 96 . . . . . . . . . . . . . . . 16 ({(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑥 ∈ (0..^((#‘𝑃) − 1)) → (¬ 𝑥 < ((#‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
139138adantl 481 . . . . . . . . . . . . . . 15 ((∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑥 ∈ (0..^((#‘𝑃) − 1)) → (¬ 𝑥 < ((#‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
140139adantl 481 . . . . . . . . . . . . . 14 ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑥 ∈ (0..^((#‘𝑃) − 1)) → (¬ 𝑥 < ((#‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
141140com12 32 . . . . . . . . . . . . 13 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → (𝑥 ∈ (0..^((#‘𝑃) − 1)) → (¬ 𝑥 < ((#‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
142141imp31 447 . . . . . . . . . . . 12 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1))) → (¬ 𝑥 < ((#‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))
143142impcom 445 . . . . . . . . . . 11 ((¬ 𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸)
144 f1ocnvdm 6580 . . . . . . . . . . 11 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸) → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)
14599, 143, 144syl2anc 694 . . . . . . . . . 10 ((¬ 𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)
14698, 145jca 553 . . . . . . . . 9 ((¬ 𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → (¬ 𝑥 < ((#‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸))
147146olcd 407 . . . . . . . 8 ((¬ 𝑥 < ((#‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1)))) → ((𝑥 < ((#‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸) ∨ (¬ 𝑥 < ((#‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)))
14897, 147pm2.61ian 848 . . . . . . 7 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1))) → ((𝑥 < ((#‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸) ∨ (¬ 𝑥 < ((#‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)))
149 ifel 4162 . . . . . . 7 (if(𝑥 < ((#‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) ∈ dom 𝐸 ↔ ((𝑥 < ((#‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸) ∨ (¬ 𝑥 < ((#‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)))
150148, 149sylibr 224 . . . . . 6 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((#‘𝑃) − 1))) → if(𝑥 < ((#‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) ∈ dom 𝐸)
151 clwlkclwwlklem2.f . . . . . 6 𝐹 = (𝑥 ∈ (0..^((#‘𝑃) − 1)) ↦ if(𝑥 < ((#‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
152150, 151fmptd 6425 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → 𝐹:(0..^((#‘𝑃) − 1))⟶dom 𝐸)
153 iswrdi 13341 . . . . 5 (𝐹:(0..^((#‘𝑃) − 1))⟶dom 𝐸𝐹 ∈ Word dom 𝐸)
154152, 153syl 17 . . . 4 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → 𝐹 ∈ Word dom 𝐸)
155 wrdf 13342 . . . . . . . 8 (𝑃 ∈ Word 𝑉𝑃:(0..^(#‘𝑃))⟶𝑉)
156155adantr 480 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → 𝑃:(0..^(#‘𝑃))⟶𝑉)
157151clwlkclwwlklem2a2 26959 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (#‘𝐹) = ((#‘𝑃) − 1))
158 fzoval 12510 . . . . . . . . . . 11 ((#‘𝑃) ∈ ℤ → (0..^(#‘𝑃)) = (0...((#‘𝑃) − 1)))
1597, 21, 1583syl 18 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → (0..^(#‘𝑃)) = (0...((#‘𝑃) − 1)))
160 oveq2 6698 . . . . . . . . . . 11 (((#‘𝑃) − 1) = (#‘𝐹) → (0...((#‘𝑃) − 1)) = (0...(#‘𝐹)))
161160eqcoms 2659 . . . . . . . . . 10 ((#‘𝐹) = ((#‘𝑃) − 1) → (0...((#‘𝑃) − 1)) = (0...(#‘𝐹)))
162159, 161sylan9eq 2705 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ (#‘𝐹) = ((#‘𝑃) − 1)) → (0..^(#‘𝑃)) = (0...(#‘𝐹)))
163157, 162syldan 486 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (0..^(#‘𝑃)) = (0...(#‘𝐹)))
164163feq2d 6069 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑃:(0..^(#‘𝑃))⟶𝑉𝑃:(0...(#‘𝐹))⟶𝑉))
165156, 164mpbid 222 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → 𝑃:(0...(#‘𝐹))⟶𝑉)
1661653adant1 1099 . . . . 5 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → 𝑃:(0...(#‘𝐹))⟶𝑉)
167166adantr 480 . . . 4 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → 𝑃:(0...(#‘𝐹))⟶𝑉)
168 clwlkclwwlklem2a1 26958 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1691683adant1 1099 . . . . . 6 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
170169imp 444 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
1711573adant1 1099 . . . . . . . 8 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (#‘𝐹) = ((#‘𝑃) − 1))
172171adantr 480 . . . . . . 7 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → (#‘𝐹) = ((#‘𝑃) − 1))
173151clwlkclwwlklem2a4 26963 . . . . . . . . . 10 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
174173impl 649 . . . . . . . . 9 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) ∧ 𝑖 ∈ (0..^((#‘𝑃) − 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
175174ralimdva 2991 . . . . . . . 8 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((#‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
176 oveq2 6698 . . . . . . . . . 10 ((#‘𝐹) = ((#‘𝑃) − 1) → (0..^(#‘𝐹)) = (0..^((#‘𝑃) − 1)))
177176raleqdv 3174 . . . . . . . . 9 ((#‘𝐹) = ((#‘𝑃) − 1) → (∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^((#‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
178177imbi2d 329 . . . . . . . 8 ((#‘𝐹) = ((#‘𝑃) − 1) → ((∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((#‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
179175, 178syl5ibr 236 . . . . . . 7 ((#‘𝐹) = ((#‘𝑃) − 1) → (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
180172, 179mpcom 38 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ ( lastS ‘𝑃) = (𝑃‘0)) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
181180adantrr 753 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (∀𝑖 ∈ (0..^((#‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
182170, 181mpd 15 . . . 4 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
183154, 167, 1823jca 1261 . . 3 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
184151clwlkclwwlklem2a3 26960 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑃‘(#‘𝐹)) = ( lastS ‘𝑃))
1851843adant1 1099 . . . . . . . . 9 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑃‘(#‘𝐹)) = ( lastS ‘𝑃))
186185eqcomd 2657 . . . . . . . 8 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ( lastS ‘𝑃) = (𝑃‘(#‘𝐹)))
187186eqeq2d 2661 . . . . . . 7 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((𝑃‘0) = ( lastS ‘𝑃) ↔ (𝑃‘0) = (𝑃‘(#‘𝐹))))
188187biimpcd 239 . . . . . 6 ((𝑃‘0) = ( lastS ‘𝑃) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑃‘0) = (𝑃‘(#‘𝐹))))
189188eqcoms 2659 . . . . 5 (( lastS ‘𝑃) = (𝑃‘0) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑃‘0) = (𝑃‘(#‘𝐹))))
190189adantr 480 . . . 4 ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → (𝑃‘0) = (𝑃‘(#‘𝐹))))
191190impcom 445 . . 3 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (𝑃‘0) = (𝑃‘(#‘𝐹)))
192183, 191jca 553 . 2 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) ∧ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))
193192ex 449 1 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (#‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((#‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((#‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(#‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(#‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  ifcif 4119  {cpr 4212   class class class wbr 4685  cmpt 4762  ccnv 5142  dom cdm 5143  ran crn 5144  wf 5922  1-1wf1 5923  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cmin 10304  cn 11058  2c2 11108  0cn0 11330  cz 11415  ...cfz 12364  ..^cfzo 12504  #chash 13157  Word cword 13323   lastS clsw 13324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-lsw 13332
This theorem is referenced by:  clwlkclwwlklem1  26965
  Copyright terms: Public domain W3C validator