Step | Hyp | Ref
| Expression |
1 | | clwlkclwwlkf.c |
. . 3
⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤
(♯‘(1st ‘𝑤))} |
2 | | clwlkclwwlkf.f |
. . 3
⊢ 𝐹 = (𝑐 ∈ 𝐶 ↦ ((2nd ‘𝑐) substr 〈0,
((♯‘(2nd ‘𝑐)) − 1)〉)) |
3 | 1, 2 | clwlkclwwlkf 27158 |
. 2
⊢ (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺)) |
4 | 2 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → 𝐹 = (𝑐 ∈ 𝐶 ↦ ((2nd ‘𝑐) substr 〈0,
((♯‘(2nd ‘𝑐)) − 1)〉))) |
5 | | fveq2 6332 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → (2nd ‘𝑐) = (2nd ‘𝑥)) |
6 | 5 | fveq2d 6336 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑥 → (♯‘(2nd
‘𝑐)) =
(♯‘(2nd ‘𝑥))) |
7 | 6 | oveq1d 6808 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑥 → ((♯‘(2nd
‘𝑐)) − 1) =
((♯‘(2nd ‘𝑥)) − 1)) |
8 | 7 | opeq2d 4546 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → 〈0,
((♯‘(2nd ‘𝑐)) − 1)〉 = 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) |
9 | 5, 8 | oveq12d 6811 |
. . . . . . . 8
⊢ (𝑐 = 𝑥 → ((2nd ‘𝑐) substr 〈0,
((♯‘(2nd ‘𝑐)) − 1)〉) = ((2nd
‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉)) |
10 | 9 | adantl 467 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑐 = 𝑥) → ((2nd ‘𝑐) substr 〈0,
((♯‘(2nd ‘𝑐)) − 1)〉) = ((2nd
‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉)) |
11 | | id 22 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐶) |
12 | | ovexd 6825 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) ∈
V) |
13 | 4, 10, 11, 12 | fvmptd 6430 |
. . . . . 6
⊢ (𝑥 ∈ 𝐶 → (𝐹‘𝑥) = ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉)) |
14 | 2 | a1i 11 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐶 → 𝐹 = (𝑐 ∈ 𝐶 ↦ ((2nd ‘𝑐) substr 〈0,
((♯‘(2nd ‘𝑐)) − 1)〉))) |
15 | | fveq2 6332 |
. . . . . . . . 9
⊢ (𝑐 = 𝑦 → (2nd ‘𝑐) = (2nd ‘𝑦)) |
16 | 15 | fveq2d 6336 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑦 → (♯‘(2nd
‘𝑐)) =
(♯‘(2nd ‘𝑦))) |
17 | 16 | oveq1d 6808 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑦 → ((♯‘(2nd
‘𝑐)) − 1) =
((♯‘(2nd ‘𝑦)) − 1)) |
18 | 17 | opeq2d 4546 |
. . . . . . . . 9
⊢ (𝑐 = 𝑦 → 〈0,
((♯‘(2nd ‘𝑐)) − 1)〉 = 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉) |
19 | 15, 18 | oveq12d 6811 |
. . . . . . . 8
⊢ (𝑐 = 𝑦 → ((2nd ‘𝑐) substr 〈0,
((♯‘(2nd ‘𝑐)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) |
20 | 19 | adantl 467 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑐 = 𝑦) → ((2nd ‘𝑐) substr 〈0,
((♯‘(2nd ‘𝑐)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) |
21 | | id 22 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐶) |
22 | | ovexd 6825 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐶 → ((2nd ‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉) ∈
V) |
23 | 14, 20, 21, 22 | fvmptd 6430 |
. . . . . 6
⊢ (𝑦 ∈ 𝐶 → (𝐹‘𝑦) = ((2nd ‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) |
24 | 13, 23 | eqeqan12d 2787 |
. . . . 5
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉))) |
25 | 24 | adantl 467 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉))) |
26 | | simpl 468 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
27 | 26 | adantl 467 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑥 ∈ 𝐶) |
28 | 27 | adantr 466 |
. . . . . . . 8
⊢ (((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) → 𝑥 ∈ 𝐶) |
29 | | simplrr 763 |
. . . . . . . 8
⊢ (((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) → 𝑦 ∈ 𝐶) |
30 | | eqid 2771 |
. . . . . . . . . . . . . . . 16
⊢
(1st ‘𝑥) = (1st ‘𝑥) |
31 | | eqid 2771 |
. . . . . . . . . . . . . . . 16
⊢
(2nd ‘𝑥) = (2nd ‘𝑥) |
32 | 1, 30, 31 | clwlkclwwlkflem 27154 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐶 → ((1st ‘𝑥)(Walks‘𝐺)(2nd ‘𝑥) ∧ ((2nd ‘𝑥)‘0) = ((2nd
‘𝑥)‘(♯‘(1st
‘𝑥))) ∧
(♯‘(1st ‘𝑥)) ∈ ℕ)) |
33 | | wlklenvm1 26752 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑥)(Walks‘𝐺)(2nd ‘𝑥) → (♯‘(1st
‘𝑥)) =
((♯‘(2nd ‘𝑥)) − 1)) |
34 | 33 | eqcomd 2777 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑥)(Walks‘𝐺)(2nd ‘𝑥) → ((♯‘(2nd
‘𝑥)) − 1) =
(♯‘(1st ‘𝑥))) |
35 | 34 | 3ad2ant1 1127 |
. . . . . . . . . . . . . . 15
⊢
(((1st ‘𝑥)(Walks‘𝐺)(2nd ‘𝑥) ∧ ((2nd ‘𝑥)‘0) = ((2nd
‘𝑥)‘(♯‘(1st
‘𝑥))) ∧
(♯‘(1st ‘𝑥)) ∈ ℕ) →
((♯‘(2nd ‘𝑥)) − 1) =
(♯‘(1st ‘𝑥))) |
36 | 32, 35 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐶 → ((♯‘(2nd
‘𝑥)) − 1) =
(♯‘(1st ‘𝑥))) |
37 | 36 | adantr 466 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((♯‘(2nd
‘𝑥)) − 1) =
(♯‘(1st ‘𝑥))) |
38 | 37 | opeq2d 4546 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉 = 〈0,
(♯‘(1st ‘𝑥))〉) |
39 | 38 | oveq2d 6809 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑥) substr 〈0,
(♯‘(1st ‘𝑥))〉)) |
40 | | eqid 2771 |
. . . . . . . . . . . . . . . 16
⊢
(1st ‘𝑦) = (1st ‘𝑦) |
41 | | eqid 2771 |
. . . . . . . . . . . . . . . 16
⊢
(2nd ‘𝑦) = (2nd ‘𝑦) |
42 | 1, 40, 41 | clwlkclwwlkflem 27154 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐶 → ((1st ‘𝑦)(Walks‘𝐺)(2nd ‘𝑦) ∧ ((2nd ‘𝑦)‘0) = ((2nd
‘𝑦)‘(♯‘(1st
‘𝑦))) ∧
(♯‘(1st ‘𝑦)) ∈ ℕ)) |
43 | | wlklenvm1 26752 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑦)(Walks‘𝐺)(2nd ‘𝑦) → (♯‘(1st
‘𝑦)) =
((♯‘(2nd ‘𝑦)) − 1)) |
44 | 43 | eqcomd 2777 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑦)(Walks‘𝐺)(2nd ‘𝑦) → ((♯‘(2nd
‘𝑦)) − 1) =
(♯‘(1st ‘𝑦))) |
45 | 44 | 3ad2ant1 1127 |
. . . . . . . . . . . . . . 15
⊢
(((1st ‘𝑦)(Walks‘𝐺)(2nd ‘𝑦) ∧ ((2nd ‘𝑦)‘0) = ((2nd
‘𝑦)‘(♯‘(1st
‘𝑦))) ∧
(♯‘(1st ‘𝑦)) ∈ ℕ) →
((♯‘(2nd ‘𝑦)) − 1) =
(♯‘(1st ‘𝑦))) |
46 | 42, 45 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐶 → ((♯‘(2nd
‘𝑦)) − 1) =
(♯‘(1st ‘𝑦))) |
47 | 46 | adantl 467 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((♯‘(2nd
‘𝑦)) − 1) =
(♯‘(1st ‘𝑦))) |
48 | 47 | opeq2d 4546 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉 = 〈0,
(♯‘(1st ‘𝑦))〉) |
49 | 48 | oveq2d 6809 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → ((2nd ‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
(♯‘(1st ‘𝑦))〉)) |
50 | 39, 49 | eqeq12d 2786 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉) ↔ ((2nd
‘𝑥) substr 〈0,
(♯‘(1st ‘𝑥))〉) = ((2nd ‘𝑦) substr 〈0,
(♯‘(1st ‘𝑦))〉))) |
51 | 50 | adantl 467 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉) ↔ ((2nd
‘𝑥) substr 〈0,
(♯‘(1st ‘𝑥))〉) = ((2nd ‘𝑦) substr 〈0,
(♯‘(1st ‘𝑦))〉))) |
52 | 51 | biimpa 462 |
. . . . . . . 8
⊢ (((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) → ((2nd
‘𝑥) substr 〈0,
(♯‘(1st ‘𝑥))〉) = ((2nd ‘𝑦) substr 〈0,
(♯‘(1st ‘𝑦))〉)) |
53 | 28, 29, 52 | 3jca 1122 |
. . . . . . 7
⊢ (((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) → (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ∧ ((2nd ‘𝑥) substr 〈0,
(♯‘(1st ‘𝑥))〉) = ((2nd ‘𝑦) substr 〈0,
(♯‘(1st ‘𝑦))〉))) |
54 | 1, 30, 31, 40, 41 | clwlkclwwlkf1lem2 27155 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ∧ ((2nd ‘𝑥) substr 〈0,
(♯‘(1st ‘𝑥))〉) = ((2nd ‘𝑦) substr 〈0,
(♯‘(1st ‘𝑦))〉)) →
((♯‘(1st ‘𝑥)) = (♯‘(1st
‘𝑦)) ∧
∀𝑖 ∈
(0..^(♯‘(1st ‘𝑥)))((2nd ‘𝑥)‘𝑖) = ((2nd ‘𝑦)‘𝑖))) |
55 | | simpl 468 |
. . . . . . 7
⊢
(((♯‘(1st ‘𝑥)) = (♯‘(1st
‘𝑦)) ∧
∀𝑖 ∈
(0..^(♯‘(1st ‘𝑥)))((2nd ‘𝑥)‘𝑖) = ((2nd ‘𝑦)‘𝑖)) → (♯‘(1st
‘𝑥)) =
(♯‘(1st ‘𝑦))) |
56 | 53, 54, 55 | 3syl 18 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) →
(♯‘(1st ‘𝑥)) = (♯‘(1st
‘𝑦))) |
57 | 1, 30, 31, 40, 41 | clwlkclwwlkf1lem3 27156 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ∧ ((2nd ‘𝑥) substr 〈0,
(♯‘(1st ‘𝑥))〉) = ((2nd ‘𝑦) substr 〈0,
(♯‘(1st ‘𝑦))〉)) → ∀𝑖 ∈ (0...(♯‘(1st
‘𝑥)))((2nd
‘𝑥)‘𝑖) = ((2nd
‘𝑦)‘𝑖)) |
58 | 53, 57 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) → ∀𝑖 ∈
(0...(♯‘(1st ‘𝑥)))((2nd ‘𝑥)‘𝑖) = ((2nd ‘𝑦)‘𝑖)) |
59 | | simpl 468 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐺 ∈ USPGraph) |
60 | | wlkcpr 26759 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (Walks‘𝐺) ↔ (1st
‘𝑥)(Walks‘𝐺)(2nd ‘𝑥)) |
61 | 60 | biimpri 218 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑥)(Walks‘𝐺)(2nd ‘𝑥) → 𝑥 ∈ (Walks‘𝐺)) |
62 | 61 | 3ad2ant1 1127 |
. . . . . . . . . . . 12
⊢
(((1st ‘𝑥)(Walks‘𝐺)(2nd ‘𝑥) ∧ ((2nd ‘𝑥)‘0) = ((2nd
‘𝑥)‘(♯‘(1st
‘𝑥))) ∧
(♯‘(1st ‘𝑥)) ∈ ℕ) → 𝑥 ∈ (Walks‘𝐺)) |
63 | 32, 62 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ (Walks‘𝐺)) |
64 | | wlkcpr 26759 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (Walks‘𝐺) ↔ (1st
‘𝑦)(Walks‘𝐺)(2nd ‘𝑦)) |
65 | 64 | biimpri 218 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑦)(Walks‘𝐺)(2nd ‘𝑦) → 𝑦 ∈ (Walks‘𝐺)) |
66 | 65 | 3ad2ant1 1127 |
. . . . . . . . . . . 12
⊢
(((1st ‘𝑦)(Walks‘𝐺)(2nd ‘𝑦) ∧ ((2nd ‘𝑦)‘0) = ((2nd
‘𝑦)‘(♯‘(1st
‘𝑦))) ∧
(♯‘(1st ‘𝑦)) ∈ ℕ) → 𝑦 ∈ (Walks‘𝐺)) |
67 | 42, 66 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐶 → 𝑦 ∈ (Walks‘𝐺)) |
68 | 63, 67 | anim12i 600 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) |
69 | 68 | adantl 467 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺))) |
70 | | eqidd 2772 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (♯‘(1st
‘𝑥)) =
(♯‘(1st ‘𝑥))) |
71 | 59, 69, 70 | 3jca 1122 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st
‘𝑥)) =
(♯‘(1st ‘𝑥)))) |
72 | 71 | adantr 466 |
. . . . . . 7
⊢ (((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st
‘𝑥)) =
(♯‘(1st ‘𝑥)))) |
73 | | uspgr2wlkeq 26777 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Walks‘𝐺) ∧ 𝑦 ∈ (Walks‘𝐺)) ∧ (♯‘(1st
‘𝑥)) =
(♯‘(1st ‘𝑥))) → (𝑥 = 𝑦 ↔ ((♯‘(1st
‘𝑥)) =
(♯‘(1st ‘𝑦)) ∧ ∀𝑖 ∈ (0...(♯‘(1st
‘𝑥)))((2nd
‘𝑥)‘𝑖) = ((2nd
‘𝑦)‘𝑖)))) |
74 | 72, 73 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) → (𝑥 = 𝑦 ↔ ((♯‘(1st
‘𝑥)) =
(♯‘(1st ‘𝑦)) ∧ ∀𝑖 ∈ (0...(♯‘(1st
‘𝑥)))((2nd
‘𝑥)‘𝑖) = ((2nd
‘𝑦)‘𝑖)))) |
75 | 56, 58, 74 | mpbir2and 692 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ ((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉)) → 𝑥 = 𝑦) |
76 | 75 | ex 397 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (((2nd ‘𝑥) substr 〈0,
((♯‘(2nd ‘𝑥)) − 1)〉) = ((2nd
‘𝑦) substr 〈0,
((♯‘(2nd ‘𝑦)) − 1)〉) → 𝑥 = 𝑦)) |
77 | 25, 76 | sylbid 230 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
78 | 77 | ralrimivva 3120 |
. 2
⊢ (𝐺 ∈ USPGraph →
∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
79 | | dff13 6655 |
. 2
⊢ (𝐹:𝐶–1-1→(ClWWalks‘𝐺) ↔ (𝐹:𝐶⟶(ClWWalks‘𝐺) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
80 | 3, 78, 79 | sylanbrc 572 |
1
⊢ (𝐺 ∈ USPGraph → 𝐹:𝐶–1-1→(ClWWalks‘𝐺)) |