Step | Hyp | Ref
| Expression |
1 | | clwlkclwwlk.e |
. . . . . 6
⊢ 𝐸 = (iEdg‘𝐺) |
2 | 1 | uspgrf1oedg 26188 |
. . . . 5
⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺)) |
3 | | f1of1 6249 |
. . . . 5
⊢ (𝐸:dom 𝐸–1-1-onto→(Edg‘𝐺) → 𝐸:dom 𝐸–1-1→(Edg‘𝐺)) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝐺 ∈ USPGraph → 𝐸:dom 𝐸–1-1→(Edg‘𝐺)) |
5 | | clwlkclwwlklem3 27045 |
. . . 4
⊢ ((𝐸:dom 𝐸–1-1→(Edg‘𝐺) ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))) |
6 | 4, 5 | syl3an1 1472 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ (( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))) |
7 | | lencl 13431 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈
ℕ0) |
8 | | ige2m1fz 12544 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑃)
∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈
(0...(♯‘𝑃))) |
9 | 7, 8 | sylan 489 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈
(0...(♯‘𝑃))) |
10 | | swrd0len 13542 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈
(0...(♯‘𝑃)))
→ (♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) = ((♯‘𝑃) − 1)) |
11 | 9, 10 | syldan 488 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)) = ((♯‘𝑃) − 1)) |
12 | 7 | nn0cnd 11466 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℂ) |
13 | | 1cnd 10169 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ Word 𝑉 → 1 ∈ ℂ) |
14 | 12, 13 | subcld 10505 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) ∈
ℂ) |
15 | 14 | subid1d 10494 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ Word 𝑉 → (((♯‘𝑃) − 1) − 0) =
((♯‘𝑃) −
1)) |
16 | 15 | eqcomd 2730 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 1) −
0)) |
17 | 16 | adantr 472 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) =
(((♯‘𝑃) −
1) − 0)) |
18 | 11, 17 | eqtrd 2758 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)) = (((♯‘𝑃) − 1) − 0)) |
19 | 18 | oveq1d 6780 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)) − 1) = ((((♯‘𝑃) − 1) − 0) −
1)) |
20 | 19 | oveq2d 6781 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) →
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)) =
(0..^((((♯‘𝑃)
− 1) − 0) − 1))) |
21 | 11 | oveq1d 6780 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)) − 1) = (((♯‘𝑃) − 1) − 1)) |
22 | 21 | oveq2d 6781 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) →
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)) =
(0..^(((♯‘𝑃)
− 1) − 1))) |
23 | 22 | eleq2d 2789 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^((♯‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)) − 1)) ↔ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) −
1)))) |
24 | | simpll 807 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) →
𝑃 ∈ Word 𝑉) |
25 | | wrdlenge2n0 13449 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃 ≠ ∅) |
26 | 25 | adantr 472 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) →
𝑃 ≠
∅) |
27 | | nn0z 11513 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑃)
∈ ℕ0 → (♯‘𝑃) ∈ ℤ) |
28 | | peano2zm 11533 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑃)
∈ ℤ → ((♯‘𝑃) − 1) ∈
ℤ) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑃)
∈ ℕ0 → ((♯‘𝑃) − 1) ∈
ℤ) |
30 | 7, 29 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ Word 𝑉 → ((♯‘𝑃) − 1) ∈
ℤ) |
31 | 30 | adantr 472 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈
ℤ) |
32 | | elfzom1elfzo 12651 |
. . . . . . . . . . . . . . . 16
⊢
((((♯‘𝑃)
− 1) ∈ ℤ ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) →
𝑖 ∈
(0..^((♯‘𝑃)
− 1))) |
33 | 31, 32 | sylan 489 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) →
𝑖 ∈
(0..^((♯‘𝑃)
− 1))) |
34 | | swrdtrcfv 13562 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Word 𝑉 ∧ 𝑃 ≠ ∅ ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖) = (𝑃‘𝑖)) |
35 | 24, 26, 33, 34 | syl3anc 1439 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) →
((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖) = (𝑃‘𝑖)) |
36 | 7 | adantr 472 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈
ℕ0) |
37 | | elfzom1elp1fzo 12650 |
. . . . . . . . . . . . . . . . 17
⊢
((((♯‘𝑃)
− 1) ∈ ℤ ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) →
(𝑖 + 1) ∈
(0..^((♯‘𝑃)
− 1))) |
38 | 29, 37 | sylan 489 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘𝑃)
∈ ℕ0 ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) →
(𝑖 + 1) ∈
(0..^((♯‘𝑃)
− 1))) |
39 | 36, 38 | sylan 489 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) →
(𝑖 + 1) ∈
(0..^((♯‘𝑃)
− 1))) |
40 | | swrdtrcfv 13562 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Word 𝑉 ∧ 𝑃 ≠ ∅ ∧ (𝑖 + 1) ∈ (0..^((♯‘𝑃) − 1))) → ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1)) =
(𝑃‘(𝑖 + 1))) |
41 | 24, 26, 39, 40 | syl3anc 1439 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) →
((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1)) =
(𝑃‘(𝑖 + 1))) |
42 | 35, 41 | preq12d 4383 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) →
{((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))} =
{(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
43 | 42 | eleq1d 2788 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1))) →
({((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)) |
44 | 43 | ex 449 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^(((♯‘𝑃) − 1) − 1)) →
({((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))) |
45 | 23, 44 | sylbid 230 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑖 ∈ (0..^((♯‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)) − 1)) → ({((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉)‘𝑖), ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉)‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))) |
46 | 45 | imp 444 |
. . . . . . . . 9
⊢ (((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑖 ∈ (0..^((♯‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)) − 1))) → ({((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉)‘𝑖), ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉)‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)) |
47 | 20, 46 | raleqbidva 3257 |
. . . . . . . 8
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ↔
∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)) |
48 | | swrdtrcfvl 13571 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ( lastS ‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)) = (𝑃‘((♯‘𝑃) − 2))) |
49 | | swrdtrcfv0 13563 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉)‘0) =
(𝑃‘0)) |
50 | 48, 49 | preq12d 4383 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → {( lastS ‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}) |
51 | 50 | eleq1d 2788 |
. . . . . . . 8
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ({( lastS
‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) |
52 | 47, 51 | anbi12d 749 |
. . . . . . 7
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ∧ {( lastS
‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) |
53 | 52 | bicomd 213 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)) − 1)){((𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)‘𝑖), ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉)‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸))) |
54 | 53 | 3adant1 1122 |
. . . . 5
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)) − 1)){((𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)‘𝑖), ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉)‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {( lastS ‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸))) |
55 | | swrdcl 13539 |
. . . . . . 7
⊢ (𝑃 ∈ Word 𝑉 → (𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈ Word
𝑉) |
56 | 55 | 3ad2ant2 1126 |
. . . . . 6
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈ Word
𝑉) |
57 | 56 | 3biant1d 1554 |
. . . . 5
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ∧ {( lastS
‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸) ↔ ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈ Word
𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ∧ {( lastS
‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸))) |
58 | 54, 57 | bitrd 268 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈ Word
𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ∧ {( lastS
‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸))) |
59 | 58 | anbi2d 742 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ (( lastS ‘𝑃) = (𝑃‘0) ∧ ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈ Word
𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ∧ {( lastS
‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸)))) |
60 | 6, 59 | bitrd 268 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ (( lastS ‘𝑃) = (𝑃‘0) ∧ ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈ Word
𝑉 ∧ ∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ∧ {( lastS
‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸)))) |
61 | | uspgrupgr 26191 |
. . . . . 6
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UPGraph) |
62 | | clwlkclwwlk.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
63 | 62, 1 | isclwlkupgr 26805 |
. . . . . . 7
⊢ (𝐺 ∈ UPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))) |
64 | | 3an4anass 1416 |
. . . . . . 7
⊢ (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))) |
65 | 63, 64 | syl6bbr 278 |
. . . . . 6
⊢ (𝐺 ∈ UPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))) |
66 | 61, 65 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ USPGraph → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))) |
67 | 66 | adantr 472 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉) → (𝑓(ClWalks‘𝐺)𝑃 ↔ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))) |
68 | 67 | exbidv 1963 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ∃𝑓((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))) |
69 | 68 | 3adant3 1124 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ ∃𝑓((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))) |
70 | | eqid 2724 |
. . . . . 6
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
71 | 62, 70 | isclwwlk 27028 |
. . . . 5
⊢ ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ∈ (ClWWalks‘𝐺) ↔ (((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈ Word
𝑉 ∧ (𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ≠
∅) ∧ ∀𝑖
∈ (0..^((♯‘(𝑃 substr 〈0, ((♯‘𝑃) − 1)〉)) −
1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ (Edg‘𝐺) ∧
{( lastS ‘(𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)), ((𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)‘0)} ∈
(Edg‘𝐺))) |
72 | | simpl 474 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉) |
73 | | nn0ge2m1nn 11473 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑃)
∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈
ℕ) |
74 | 7, 73 | sylan 489 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈
ℕ) |
75 | | nn0re 11414 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑃)
∈ ℕ0 → (♯‘𝑃) ∈ ℝ) |
76 | 75 | lem1d 11070 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑃)
∈ ℕ0 → ((♯‘𝑃) − 1) ≤ (♯‘𝑃)) |
77 | 76 | a1d 25 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑃)
∈ ℕ0 → (2 ≤ (♯‘𝑃) → ((♯‘𝑃) − 1) ≤ (♯‘𝑃))) |
78 | 7, 77 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ Word 𝑉 → (2 ≤ (♯‘𝑃) → ((♯‘𝑃) − 1) ≤
(♯‘𝑃))) |
79 | 78 | imp 444 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ≤
(♯‘𝑃)) |
80 | 72, 74, 79 | 3jca 1379 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧
((♯‘𝑃) −
1) ≤ (♯‘𝑃))) |
81 | 80 | 3adant1 1122 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧
((♯‘𝑃) −
1) ≤ (♯‘𝑃))) |
82 | | swrdn0 13551 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Word 𝑉 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧
((♯‘𝑃) −
1) ≤ (♯‘𝑃))
→ (𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ≠ ∅) |
83 | 81, 82 | syl 17 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ≠
∅) |
84 | 83 | biantrud 529 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈ Word
𝑉 ↔ ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ∈ Word 𝑉
∧ (𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ≠ ∅))) |
85 | 84 | bicomd 213 |
. . . . . 6
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈ Word
𝑉 ∧ (𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ≠
∅) ↔ (𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉) ∈ Word 𝑉)) |
86 | 85 | 3anbi1d 1516 |
. . . . 5
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈ Word
𝑉 ∧ (𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ≠
∅) ∧ ∀𝑖
∈ (0..^((♯‘(𝑃 substr 〈0, ((♯‘𝑃) − 1)〉)) −
1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ (Edg‘𝐺) ∧
{( lastS ‘(𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)), ((𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)‘0)} ∈
(Edg‘𝐺)) ↔
((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ∈ Word 𝑉
∧ ∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ (Edg‘𝐺) ∧
{( lastS ‘(𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)), ((𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)‘0)} ∈
(Edg‘𝐺)))) |
87 | 71, 86 | syl5bb 272 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈
(ClWWalks‘𝐺) ↔
((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ∈ Word 𝑉
∧ ∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ (Edg‘𝐺) ∧
{( lastS ‘(𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)), ((𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)‘0)} ∈
(Edg‘𝐺)))) |
88 | | biid 251 |
. . . . 5
⊢ ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ∈ Word 𝑉
↔ (𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ∈ Word 𝑉) |
89 | | edgval 26061 |
. . . . . . . 8
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
90 | 1 | eqcomi 2733 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
𝐸 |
91 | 90 | rneqi 5459 |
. . . . . . . 8
⊢ ran
(iEdg‘𝐺) = ran 𝐸 |
92 | 89, 91 | eqtri 2746 |
. . . . . . 7
⊢
(Edg‘𝐺) = ran
𝐸 |
93 | 92 | eleq2i 2795 |
. . . . . 6
⊢ ({((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ (Edg‘𝐺) ↔
{((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸) |
94 | 93 | ralbii 3082 |
. . . . 5
⊢
(∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ (Edg‘𝐺) ↔
∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸) |
95 | 92 | eleq2i 2795 |
. . . . 5
⊢ ({( lastS
‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ (Edg‘𝐺) ↔ {( lastS ‘(𝑃 substr 〈0, ((♯‘𝑃) − 1)〉)), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘0)} ∈ ran 𝐸) |
96 | 88, 94, 95 | 3anbi123i 1388 |
. . . 4
⊢ (((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ∈ Word 𝑉
∧ ∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ (Edg‘𝐺) ∧
{( lastS ‘(𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)), ((𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)‘0)} ∈
(Edg‘𝐺)) ↔
((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ∈ Word 𝑉
∧ ∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ∧ {( lastS
‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸)) |
97 | 87, 96 | syl6bb 276 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈
(ClWWalks‘𝐺) ↔
((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ∈ Word 𝑉
∧ ∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ∧ {( lastS
‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸))) |
98 | 97 | anbi2d 742 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((( lastS ‘𝑃) = (𝑃‘0) ∧ (𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈
(ClWWalks‘𝐺)) ↔
(( lastS ‘𝑃) = (𝑃‘0) ∧ ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉) ∈ Word 𝑉
∧ ∀𝑖 ∈
(0..^((♯‘(𝑃
substr 〈0, ((♯‘𝑃) − 1)〉)) − 1)){((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘𝑖), ((𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)‘(𝑖 + 1))}
∈ ran 𝐸 ∧ {( lastS
‘(𝑃 substr 〈0,
((♯‘𝑃) −
1)〉)), ((𝑃 substr
〈0, ((♯‘𝑃)
− 1)〉)‘0)} ∈ ran 𝐸)))) |
99 | 60, 69, 98 | 3bitr4d 300 |
1
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)𝑃 ↔ (( lastS ‘𝑃) = (𝑃‘0) ∧ (𝑃 substr 〈0, ((♯‘𝑃) − 1)〉) ∈
(ClWWalks‘𝐺)))) |