![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsss | Structured version Visualization version GIF version |
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3759 | . . . . . 6 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥)) | |
2 | 1 | adantr 466 | . . . . 5 ⊢ ((𝑇 ⊆ 𝑆 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥)) |
3 | 2 | ss2rabdv 3832 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
4 | intss 4633 | . . . 4 ⊢ ({𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥} ⊆ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
6 | 5 | 3ad2ant3 1129 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥} ⊆ ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
7 | simp1 1130 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝐽 ∈ Top) | |
8 | sstr2 3759 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 → (𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋)) | |
9 | 8 | impcom 394 | . . . 4 ⊢ ((𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
10 | 9 | 3adant1 1124 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
11 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
12 | 11 | clsval 21062 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((cls‘𝐽)‘𝑇) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
13 | 7, 10, 12 | syl2anc 573 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑇 ⊆ 𝑥}) |
14 | 11 | clsval 21062 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
15 | 14 | 3adant3 1126 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) |
16 | 6, 13, 15 | 3sstr4d 3797 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 {crab 3065 ⊆ wss 3723 ∪ cuni 4575 ∩ cint 4612 ‘cfv 6030 Topctop 20918 Clsdccld 21041 clsccl 21043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-top 20919 df-cld 21044 df-cls 21046 |
This theorem is referenced by: ntrss 21080 clsss2 21097 lpsscls 21166 lpss3 21169 cnclsi 21297 cncls 21299 lpcls 21389 cnextcn 22091 clssubg 22132 clsnsg 22133 utopreg 22276 hauseqcn 30281 kur14lem6 31531 clsint2 32661 opnregcld 32662 |
Copyright terms: Public domain | W3C validator |