Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneiel1 Structured version   Visualization version   GIF version

Theorem clsneiel1 38926
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of a subset is equivalent to the complement of the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
clsneiel.x (𝜑𝑋𝐵)
clsneiel.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
clsneiel1 (𝜑 → (𝑋 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐾,𝑗,𝑘,𝑙,𝑚   𝑛,𝐾,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙   𝑛,𝑁,𝑜,𝑝   𝑆,𝑚   𝑆,𝑜   𝑋,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑛,𝑝,𝑙)   𝐹(𝑚)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑚)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑋(𝑖,𝑗,𝑘,𝑛,𝑜,𝑝)

Proof of Theorem clsneiel1
StepHypRef Expression
1 clsnei.d . . . 4 𝐷 = (𝑃𝐵)
2 clsnei.h . . . 4 𝐻 = (𝐹𝐷)
3 clsnei.r . . . 4 (𝜑𝐾𝐻𝑁)
41, 2, 3clsneibex 38920 . . 3 (𝜑𝐵 ∈ V)
54ancli 575 . 2 (𝜑 → (𝜑𝐵 ∈ V))
6 clsnei.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
7 simpr 479 . . . . . . 7 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
8 pwexg 4999 . . . . . . 7 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
97, 8syl 17 . . . . . 6 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
10 clsnei.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
116, 9, 7, 10fsovfd 38826 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)⟶(𝒫 𝒫 𝐵𝑚 𝐵))
1211ffnd 6207 . . . 4 ((𝜑𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵𝑚 𝒫 𝐵))
13 clsnei.p . . . . . 6 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1413, 1, 7dssmapf1od 38835 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
15 f1of 6299 . . . . 5 (𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵) → 𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)⟶(𝒫 𝐵𝑚 𝒫 𝐵))
1614, 15syl 17 . . . 4 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)⟶(𝒫 𝐵𝑚 𝒫 𝐵))
172breqi 4810 . . . . . 6 (𝐾𝐻𝑁𝐾(𝐹𝐷)𝑁)
183, 17sylib 208 . . . . 5 (𝜑𝐾(𝐹𝐷)𝑁)
1918adantr 472 . . . 4 ((𝜑𝐵 ∈ V) → 𝐾(𝐹𝐷)𝑁)
2012, 16, 19brcoffn 38848 . . 3 ((𝜑𝐵 ∈ V) → (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁))
2120ancli 575 . 2 ((𝜑𝐵 ∈ V) → ((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)))
22 simprl 811 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝐾𝐷(𝐷𝐾))
23 clsneiel.x . . . . 5 (𝜑𝑋𝐵)
2423ad2antrr 764 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝑋𝐵)
25 clsneiel.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
2625ad2antrr 764 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝑆 ∈ 𝒫 𝐵)
2713, 1, 22, 24, 26ntrclselnel1 38875 . . 3 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝑋 ∈ (𝐾𝑆) ↔ ¬ 𝑋 ∈ ((𝐷𝐾)‘(𝐵𝑆))))
28 simprr 813 . . . . 5 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝐷𝐾)𝐹𝑁)
29 simplr 809 . . . . . 6 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → 𝐵 ∈ V)
30 difssd 3881 . . . . . 6 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝐵𝑆) ⊆ 𝐵)
3129, 30sselpwd 4959 . . . . 5 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝐵𝑆) ∈ 𝒫 𝐵)
326, 10, 28, 24, 31ntrneiel 38899 . . . 4 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝑋 ∈ ((𝐷𝐾)‘(𝐵𝑆)) ↔ (𝐵𝑆) ∈ (𝑁𝑋)))
3332notbid 307 . . 3 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (¬ 𝑋 ∈ ((𝐷𝐾)‘(𝐵𝑆)) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
3427, 33bitrd 268 . 2 (((𝜑𝐵 ∈ V) ∧ (𝐾𝐷(𝐷𝐾) ∧ (𝐷𝐾)𝐹𝑁)) → (𝑋 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
355, 21, 343syl 18 1 (𝜑 → (𝑋 ∈ (𝐾𝑆) ↔ ¬ (𝐵𝑆) ∈ (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340  cdif 3712  𝒫 cpw 4302   class class class wbr 4804  cmpt 4881  ccom 5270  wf 6045  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6814  cmpt2 6816  𝑚 cmap 8025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-map 8027
This theorem is referenced by:  clsneiel2  38927  clsneifv4  38929
  Copyright terms: Public domain W3C validator