MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsconn Structured version   Visualization version   GIF version

Theorem clsconn 21227
Description: The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
clsconn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → (𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn)

Proof of Theorem clsconn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll3 1101 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (𝐽t 𝐴) ∈ Conn)
2 simpll1 1099 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
3 simpll2 1100 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴𝑋)
4 simplrl 800 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑥𝐽)
5 simplrr 801 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑦𝐽)
6 simprl1 1105 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅)
7 n0 3929 . . . . . . . . 9 ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
86, 7sylib 208 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
92adantr 481 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋))
10 topontop 20712 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
119, 10syl 17 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top)
123adantr 481 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴𝑋)
13 toponuni 20713 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
149, 13syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = 𝐽)
1512, 14sseqtrd 3639 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 𝐽)
16 inss2 3832 . . . . . . . . . 10 (𝑥 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐽)‘𝐴)
17 simpr 477 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
1816, 17sseldi 3599 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
194adantr 481 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑥𝐽)
20 inss1 3831 . . . . . . . . . 10 (𝑥 ∩ ((cls‘𝐽)‘𝐴)) ⊆ 𝑥
2120, 17sseldi 3599 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧𝑥)
22 eqid 2621 . . . . . . . . . 10 𝐽 = 𝐽
2322clsndisj 20873 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ (𝑥𝐽𝑧𝑥)) → (𝑥𝐴) ≠ ∅)
2411, 15, 18, 19, 21, 23syl32anc 1333 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → (𝑥𝐴) ≠ ∅)
258, 24exlimddv 1862 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝐴) ≠ ∅)
26 simprl2 1106 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅)
27 n0 3929 . . . . . . . . 9 ((𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
2826, 27sylib 208 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
292adantr 481 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋))
3029, 10syl 17 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top)
313adantr 481 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴𝑋)
3229, 13syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = 𝐽)
3331, 32sseqtrd 3639 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 𝐽)
34 inss2 3832 . . . . . . . . . 10 (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ⊆ ((cls‘𝐽)‘𝐴)
35 simpr 477 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
3634, 35sseldi 3599 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
375adantr 481 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑦𝐽)
38 inss1 3831 . . . . . . . . . 10 (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ⊆ 𝑦
3938, 35sseldi 3599 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧𝑦)
4022clsndisj 20873 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ (𝑦𝐽𝑧𝑦)) → (𝑦𝐴) ≠ ∅)
4130, 33, 36, 37, 39, 40syl32anc 1333 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → (𝑦𝐴) ≠ ∅)
4228, 41exlimddv 1862 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑦𝐴) ≠ ∅)
43 simprl3 1107 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
442, 10syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐽 ∈ Top)
452, 13syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑋 = 𝐽)
463, 45sseqtrd 3639 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 𝐽)
4722sscls 20854 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
4844, 46, 47syl2anc 693 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
4948sscond 3745 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑋 ∖ ((cls‘𝐽)‘𝐴)) ⊆ (𝑋𝐴))
5043, 49sstrd 3611 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (𝑋𝐴))
51 ssv 3623 . . . . . . . . . 10 𝑋 ⊆ V
52 ssdif 3743 . . . . . . . . . 10 (𝑋 ⊆ V → (𝑋𝐴) ⊆ (V ∖ 𝐴))
5351, 52ax-mp 5 . . . . . . . . 9 (𝑋𝐴) ⊆ (V ∖ 𝐴)
5450, 53syl6ss 3613 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (V ∖ 𝐴))
55 disj2 4022 . . . . . . . 8 (((𝑥𝑦) ∩ 𝐴) = ∅ ↔ (𝑥𝑦) ⊆ (V ∖ 𝐴))
5654, 55sylibr 224 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ((𝑥𝑦) ∩ 𝐴) = ∅)
57 simprr 796 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))
5848, 57sstrd 3611 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 ⊆ (𝑥𝑦))
592, 3, 4, 5, 25, 42, 56, 58nconnsubb 21220 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ¬ (𝐽t 𝐴) ∈ Conn)
6059expr 643 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦) → ¬ (𝐽t 𝐴) ∈ Conn))
611, 60mt2d 131 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))
6261ex 450 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦)))
6362ralrimivva 2970 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦)))
64 simp1 1060 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → 𝐽 ∈ (TopOn‘𝑋))
6513sseq2d 3631 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → (𝐴𝑋𝐴 𝐽))
6665biimpa 501 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 𝐽)
6722clsss3 20857 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐽)
6810, 67sylan 488 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐽)
6966, 68syldan 487 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝐽)
7013adantr 481 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 = 𝐽)
7169, 70sseqtr4d 3640 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
72713adant3 1080 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
73 connsub 21218 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝐴) ⊆ 𝑋) → ((𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))))
7464, 72, 73syl2anc 693 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ((𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))))
7563, 74mpbird 247 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → (𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1482  wex 1703  wcel 1989  wne 2793  wral 2911  Vcvv 3198  cdif 3569  cun 3570  cin 3571  wss 3572  c0 3913   cuni 4434  cfv 5886  (class class class)co 6647  t crest 16075  Topctop 20692  TopOnctopon 20709  clsccl 20816  Conncconn 21208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-oadd 7561  df-er 7739  df-en 7953  df-fin 7956  df-fi 8314  df-rest 16077  df-topgen 16098  df-top 20693  df-topon 20710  df-bases 20744  df-cld 20817  df-ntr 20818  df-cls 20819  df-conn 21209
This theorem is referenced by:  conncompcld  21231
  Copyright terms: Public domain W3C validator