![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clrellem | Structured version Visualization version GIF version |
Description: When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.) |
Ref | Expression |
---|---|
clrellem.y | ⊢ (𝜑 → 𝑌 ∈ V) |
clrellem.rel | ⊢ (𝜑 → Rel 𝑋) |
clrellem.sub | ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) |
clrellem.sup | ⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
clrellem.maj | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
clrellem | ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clrellem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) | |
2 | cnvexg 7278 | . . . 4 ⊢ (𝑌 ∈ V → ◡𝑌 ∈ V) | |
3 | cnvexg 7278 | . . . 4 ⊢ (◡𝑌 ∈ V → ◡◡𝑌 ∈ V) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡◡𝑌 ∈ V) |
5 | clrellem.rel | . . . . . 6 ⊢ (𝜑 → Rel 𝑋) | |
6 | dfrel2 5741 | . . . . . 6 ⊢ (Rel 𝑋 ↔ ◡◡𝑋 = 𝑋) | |
7 | 5, 6 | sylib 208 | . . . . 5 ⊢ (𝜑 → ◡◡𝑋 = 𝑋) |
8 | clrellem.sup | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑌) | |
9 | cnvss 5450 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑌 → ◡𝑋 ⊆ ◡𝑌) | |
10 | cnvss 5450 | . . . . . 6 ⊢ (◡𝑋 ⊆ ◡𝑌 → ◡◡𝑋 ⊆ ◡◡𝑌) | |
11 | 8, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ◡◡𝑋 ⊆ ◡◡𝑌) |
12 | 7, 11 | eqsstr3d 3781 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ◡◡𝑌) |
13 | clrellem.maj | . . . 4 ⊢ (𝜑 → 𝜒) | |
14 | relcnv 5661 | . . . . 5 ⊢ Rel ◡◡𝑌 | |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → Rel ◡◡𝑌) |
16 | 12, 13, 15 | jca31 558 | . . 3 ⊢ (𝜑 → ((𝑋 ⊆ ◡◡𝑌 ∧ 𝜒) ∧ Rel ◡◡𝑌)) |
17 | clrellem.sub | . . . . 5 ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) | |
18 | 17 | cleq2lem 38434 | . . . 4 ⊢ (𝑥 = ◡◡𝑌 → ((𝑋 ⊆ 𝑥 ∧ 𝜓) ↔ (𝑋 ⊆ ◡◡𝑌 ∧ 𝜒))) |
19 | releq 5358 | . . . 4 ⊢ (𝑥 = ◡◡𝑌 → (Rel 𝑥 ↔ Rel ◡◡𝑌)) | |
20 | 18, 19 | anbi12d 749 | . . 3 ⊢ (𝑥 = ◡◡𝑌 → (((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥) ↔ ((𝑋 ⊆ ◡◡𝑌 ∧ 𝜒) ∧ Rel ◡◡𝑌))) |
21 | 4, 16, 20 | elabd 3492 | . 2 ⊢ (𝜑 → ∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥)) |
22 | releq 5358 | . . . 4 ⊢ (𝑦 = 𝑥 → (Rel 𝑦 ↔ Rel 𝑥)) | |
23 | 22 | rexab2 3514 | . . 3 ⊢ (∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦 ↔ ∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥)) |
24 | 23 | biimpri 218 | . 2 ⊢ (∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥) → ∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦) |
25 | relint 5398 | . 2 ⊢ (∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | |
26 | 21, 24, 25 | 3syl 18 | 1 ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2139 {cab 2746 ∃wrex 3051 Vcvv 3340 ⊆ wss 3715 ∩ cint 4627 ◡ccnv 5265 Rel wrel 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-iin 4675 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |