MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmsub4 Structured version   Visualization version   GIF version

Theorem clmsub4 23125
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 5-Aug-2007.) (Revised by AV, 29-Sep-2021.)
Hypotheses
Ref Expression
clmpm1dir.v 𝑉 = (Base‘𝑊)
clmpm1dir.s · = ( ·𝑠𝑊)
clmpm1dir.a + = (+g𝑊)
Assertion
Ref Expression
clmsub4 ((𝑊 ∈ ℂMod ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))))

Proof of Theorem clmsub4
StepHypRef Expression
1 simpl 468 . . . . 5 ((𝑊 ∈ ℂMod ∧ (𝐶𝑉𝐷𝑉)) → 𝑊 ∈ ℂMod)
2 eqid 2771 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2771 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
42, 3clmneg1 23101 . . . . . 6 (𝑊 ∈ ℂMod → -1 ∈ (Base‘(Scalar‘𝑊)))
54adantr 466 . . . . 5 ((𝑊 ∈ ℂMod ∧ (𝐶𝑉𝐷𝑉)) → -1 ∈ (Base‘(Scalar‘𝑊)))
6 simpl 468 . . . . . 6 ((𝐶𝑉𝐷𝑉) → 𝐶𝑉)
76adantl 467 . . . . 5 ((𝑊 ∈ ℂMod ∧ (𝐶𝑉𝐷𝑉)) → 𝐶𝑉)
8 simpr 471 . . . . . 6 ((𝐶𝑉𝐷𝑉) → 𝐷𝑉)
98adantl 467 . . . . 5 ((𝑊 ∈ ℂMod ∧ (𝐶𝑉𝐷𝑉)) → 𝐷𝑉)
10 clmpm1dir.v . . . . . 6 𝑉 = (Base‘𝑊)
11 clmpm1dir.s . . . . . 6 · = ( ·𝑠𝑊)
12 clmpm1dir.a . . . . . 6 + = (+g𝑊)
1310, 2, 11, 3, 12clmvsdi 23111 . . . . 5 ((𝑊 ∈ ℂMod ∧ (-1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐶𝑉𝐷𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷)))
141, 5, 7, 9, 13syl13anc 1478 . . . 4 ((𝑊 ∈ ℂMod ∧ (𝐶𝑉𝐷𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷)))
15143adant2 1125 . . 3 ((𝑊 ∈ ℂMod ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷)))
1615oveq2d 6812 . 2 ((𝑊 ∈ ℂMod ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))))
17 clmabl 23088 . . . . 5 (𝑊 ∈ ℂMod → 𝑊 ∈ Abel)
18 ablcmn 18406 . . . . 5 (𝑊 ∈ Abel → 𝑊 ∈ CMnd)
1917, 18syl 17 . . . 4 (𝑊 ∈ ℂMod → 𝑊 ∈ CMnd)
20193ad2ant1 1127 . . 3 ((𝑊 ∈ ℂMod ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝑊 ∈ CMnd)
21 simp2 1131 . . 3 ((𝑊 ∈ ℂMod ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (𝐴𝑉𝐵𝑉))
22 simpl 468 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝐶𝑉) → 𝑊 ∈ ℂMod)
234adantr 466 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝐶𝑉) → -1 ∈ (Base‘(Scalar‘𝑊)))
24 simpr 471 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝐶𝑉) → 𝐶𝑉)
2510, 2, 11, 3clmvscl 23107 . . . . . 6 ((𝑊 ∈ ℂMod ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐶𝑉) → (-1 · 𝐶) ∈ 𝑉)
2622, 23, 24, 25syl3anc 1476 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐶𝑉) → (-1 · 𝐶) ∈ 𝑉)
27 simpl 468 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝐷𝑉) → 𝑊 ∈ ℂMod)
284adantr 466 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝐷𝑉) → -1 ∈ (Base‘(Scalar‘𝑊)))
29 simpr 471 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝐷𝑉) → 𝐷𝑉)
3010, 2, 11, 3clmvscl 23107 . . . . . 6 ((𝑊 ∈ ℂMod ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐷𝑉) → (-1 · 𝐷) ∈ 𝑉)
3127, 28, 29, 30syl3anc 1476 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐷𝑉) → (-1 · 𝐷) ∈ 𝑉)
3226, 31anim12dan 605 . . . 4 ((𝑊 ∈ ℂMod ∧ (𝐶𝑉𝐷𝑉)) → ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉))
33323adant2 1125 . . 3 ((𝑊 ∈ ℂMod ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉))
3410, 12cmn4 18419 . . 3 ((𝑊 ∈ CMnd ∧ (𝐴𝑉𝐵𝑉) ∧ ((-1 · 𝐶) ∈ 𝑉 ∧ (-1 · 𝐷) ∈ 𝑉)) → ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))))
3520, 21, 33, 34syl3anc 1476 . 2 ((𝑊 ∈ ℂMod ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))))
3616, 35eqtrd 2805 1 ((𝑊 ∈ ℂMod ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cfv 6030  (class class class)co 6796  1c1 10143  -cneg 10473  Basecbs 16064  +gcplusg 16149  Scalarcsca 16152   ·𝑠 cvsca 16153  CMndccmn 18400  Abelcabl 18401  ℂModcclm 23081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-fz 12534  df-seq 13009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-mulg 17749  df-subg 17799  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-subrg 18988  df-lmod 19075  df-cnfld 19962  df-clm 23082
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator