![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmopfne | Structured version Visualization version GIF version |
Description: The (functionalized) operations of addition and multiplication by a scalar of a subcomplex module cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 3-Oct-2021.) |
Ref | Expression |
---|---|
clmopfne.t | ⊢ · = ( ·sf ‘𝑊) |
clmopfne.a | ⊢ + = (+𝑓‘𝑊) |
Ref | Expression |
---|---|
clmopfne | ⊢ (𝑊 ∈ ℂMod → + ≠ · ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod 23085 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
2 | ax-1ne0 10206 | . . . 4 ⊢ 1 ≠ 0 | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑊 ∈ ℂMod → 1 ≠ 0) |
4 | eqid 2770 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | 4 | clm1 23091 | . . 3 ⊢ (𝑊 ∈ ℂMod → 1 = (1r‘(Scalar‘𝑊))) |
6 | 4 | clm0 23090 | . . 3 ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊))) |
7 | 3, 5, 6 | 3netr3d 3018 | . 2 ⊢ (𝑊 ∈ ℂMod → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) |
8 | clmopfne.t | . . 3 ⊢ · = ( ·sf ‘𝑊) | |
9 | clmopfne.a | . . 3 ⊢ + = (+𝑓‘𝑊) | |
10 | eqid 2770 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
11 | eqid 2770 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
12 | eqid 2770 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
13 | eqid 2770 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
14 | 8, 9, 10, 4, 11, 12, 13 | lmodfopne 19110 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) → + ≠ · ) |
15 | 1, 7, 14 | syl2anc 565 | 1 ⊢ (𝑊 ∈ ℂMod → + ≠ · ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ‘cfv 6031 0cc0 10137 1c1 10138 Basecbs 16063 Scalarcsca 16151 0gc0g 16307 +𝑓cplusf 17446 1rcur 18708 LModclmod 19072 ·sf cscaf 19073 ℂModcclm 23080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-0g 16309 df-plusf 17448 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-grp 17632 df-minusg 17633 df-subg 17798 df-cmn 18401 df-mgp 18697 df-ur 18709 df-ring 18756 df-cring 18757 df-subrg 18987 df-lmod 19074 df-scaf 19075 df-cnfld 19961 df-clm 23081 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |