MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmmulg Structured version   Visualization version   GIF version

Theorem clmmulg 23121
Description: The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
clmmulg.1 𝑉 = (Base‘𝑊)
clmmulg.2 = (.g𝑊)
clmmulg.3 · = ( ·𝑠𝑊)
Assertion
Ref Expression
clmmulg ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵𝑉) → (𝐴 𝐵) = (𝐴 · 𝐵))

Proof of Theorem clmmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6821 . . . . 5 (𝑥 = 0 → (𝑥 𝐵) = (0 𝐵))
2 oveq1 6821 . . . . 5 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
31, 2eqeq12d 2775 . . . 4 (𝑥 = 0 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (0 𝐵) = (0 · 𝐵)))
4 oveq1 6821 . . . . 5 (𝑥 = 𝑦 → (𝑥 𝐵) = (𝑦 𝐵))
5 oveq1 6821 . . . . 5 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
64, 5eqeq12d 2775 . . . 4 (𝑥 = 𝑦 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (𝑦 𝐵) = (𝑦 · 𝐵)))
7 oveq1 6821 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 𝐵) = ((𝑦 + 1) 𝐵))
8 oveq1 6821 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
97, 8eqeq12d 2775 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵)))
10 oveq1 6821 . . . . 5 (𝑥 = -𝑦 → (𝑥 𝐵) = (-𝑦 𝐵))
11 oveq1 6821 . . . . 5 (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵))
1210, 11eqeq12d 2775 . . . 4 (𝑥 = -𝑦 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (-𝑦 𝐵) = (-𝑦 · 𝐵)))
13 oveq1 6821 . . . . 5 (𝑥 = 𝐴 → (𝑥 𝐵) = (𝐴 𝐵))
14 oveq1 6821 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
1513, 14eqeq12d 2775 . . . 4 (𝑥 = 𝐴 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (𝐴 𝐵) = (𝐴 · 𝐵)))
16 clmmulg.1 . . . . . . 7 𝑉 = (Base‘𝑊)
17 eqid 2760 . . . . . . 7 (0g𝑊) = (0g𝑊)
18 clmmulg.2 . . . . . . 7 = (.g𝑊)
1916, 17, 18mulg0 17767 . . . . . 6 (𝐵𝑉 → (0 𝐵) = (0g𝑊))
2019adantl 473 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 𝐵) = (0g𝑊))
21 eqid 2760 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
22 clmmulg.3 . . . . . 6 · = ( ·𝑠𝑊)
2316, 21, 22, 17clm0vs 23115 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 · 𝐵) = (0g𝑊))
2420, 23eqtr4d 2797 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 𝐵) = (0 · 𝐵))
25 oveq1 6821 . . . . . 6 ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 𝐵)(+g𝑊)𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
26 clmgrp 23088 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)
27 grpmnd 17650 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
2826, 27syl 17 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝑊 ∈ Mnd)
2928ad2antrr 764 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈ Mnd)
30 simpr 479 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
31 simplr 809 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝐵𝑉)
32 eqid 2760 . . . . . . . . 9 (+g𝑊) = (+g𝑊)
3316, 18, 32mulgnn0p1 17773 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵𝑉) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝑊)𝐵))
3429, 30, 31, 33syl3anc 1477 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝑊)𝐵))
35 simpll 807 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈ ℂMod)
36 eqid 2760 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3721, 36clmzss 23098 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → ℤ ⊆ (Base‘(Scalar‘𝑊)))
3837ad2antrr 764 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ℤ ⊆ (Base‘(Scalar‘𝑊)))
39 nn0z 11612 . . . . . . . . . . 11 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
4039adantl 473 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
4138, 40sseldd 3745 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
42 1zzd 11620 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈ ℤ)
4338, 42sseldd 3745 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈ (Base‘(Scalar‘𝑊)))
4416, 21, 22, 36, 32clmvsdir 23111 . . . . . . . . 9 ((𝑊 ∈ ℂMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑊)) ∧ 1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑉)) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)))
4535, 41, 43, 31, 44syl13anc 1479 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)))
4616, 22clmvs1 23113 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (1 · 𝐵) = 𝐵)
4746adantr 472 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → (1 · 𝐵) = 𝐵)
4847oveq2d 6830 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
4945, 48eqtrd 2794 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
5034, 49eqeq12d 2775 . . . . . 6 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦 𝐵)(+g𝑊)𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵)))
5125, 50syl5ibr 236 . . . . 5 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵)))
5251ex 449 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝑦 ∈ ℕ0 → ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵))))
53 fveq2 6353 . . . . . 6 ((𝑦 𝐵) = (𝑦 · 𝐵) → ((invg𝑊)‘(𝑦 𝐵)) = ((invg𝑊)‘(𝑦 · 𝐵)))
5426ad2antrr 764 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ Grp)
55 nnz 11611 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
5655adantl 473 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
57 simplr 809 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝐵𝑉)
58 eqid 2760 . . . . . . . . 9 (invg𝑊) = (invg𝑊)
5916, 18, 58mulgneg 17781 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝐵𝑉) → (-𝑦 𝐵) = ((invg𝑊)‘(𝑦 𝐵)))
6054, 56, 57, 59syl3anc 1477 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 𝐵) = ((invg𝑊)‘(𝑦 𝐵)))
61 simpll 807 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ ℂMod)
6237ad2antrr 764 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ℤ ⊆ (Base‘(Scalar‘𝑊)))
6362, 56sseldd 3745 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
6416, 21, 22, 58, 36, 61, 57, 63clmvsneg 23120 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((invg𝑊)‘(𝑦 · 𝐵)) = (-𝑦 · 𝐵))
6564eqcomd 2766 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 · 𝐵) = ((invg𝑊)‘(𝑦 · 𝐵)))
6660, 65eqeq12d 2775 . . . . . 6 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((-𝑦 𝐵) = (-𝑦 · 𝐵) ↔ ((invg𝑊)‘(𝑦 𝐵)) = ((invg𝑊)‘(𝑦 · 𝐵))))
6753, 66syl5ibr 236 . . . . 5 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((𝑦 𝐵) = (𝑦 · 𝐵) → (-𝑦 𝐵) = (-𝑦 · 𝐵)))
6867ex 449 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝑦 ∈ ℕ → ((𝑦 𝐵) = (𝑦 · 𝐵) → (-𝑦 𝐵) = (-𝑦 · 𝐵))))
693, 6, 9, 12, 15, 24, 52, 68zindd 11690 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝐴 ∈ ℤ → (𝐴 𝐵) = (𝐴 · 𝐵)))
70693impia 1110 . 2 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉𝐴 ∈ ℤ) → (𝐴 𝐵) = (𝐴 · 𝐵))
71703com23 1121 1 ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵𝑉) → (𝐴 𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wss 3715  cfv 6049  (class class class)co 6814  0cc0 10148  1c1 10149   + caddc 10151  -cneg 10479  cn 11232  0cn0 11504  cz 11589  Basecbs 16079  +gcplusg 16163  Scalarcsca 16166   ·𝑠 cvsca 16167  0gc0g 16322  Mndcmnd 17515  Grpcgrp 17643  invgcminusg 17644  .gcmg 17761  ℂModcclm 23082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-seq 13016  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-mulg 17762  df-subg 17812  df-cmn 18415  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-subrg 19000  df-lmod 19087  df-cnfld 19969  df-clm 23083
This theorem is referenced by:  clmzlmvsca  23133  minveclem2  23417
  Copyright terms: Public domain W3C validator