![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clmgmOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mgmcl 17467 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
clmgmOLD.1 | ⊢ 𝑋 = dom dom 𝐺 |
Ref | Expression |
---|---|
clmgmOLD | ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmgmOLD.1 | . . . . 5 ⊢ 𝑋 = dom dom 𝐺 | |
2 | 1 | ismgmOLD 33981 | . . . 4 ⊢ (𝐺 ∈ Magma → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) |
3 | fovrn 6971 | . . . . 5 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | |
4 | 3 | 3exp 1113 | . . . 4 ⊢ (𝐺:(𝑋 × 𝑋)⟶𝑋 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))) |
5 | 2, 4 | syl6bi 243 | . . 3 ⊢ (𝐺 ∈ Magma → (𝐺 ∈ Magma → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋)))) |
6 | 5 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ Magma → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))) |
7 | 6 | 3imp 1102 | 1 ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 × cxp 5265 dom cdm 5267 ⟶wf 6046 (class class class)co 6815 Magmacmagm 33979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-fv 6058 df-ov 6818 df-mgmOLD 33980 |
This theorem is referenced by: exidcl 34007 |
Copyright terms: Public domain | W3C validator |