Step | Hyp | Ref
| Expression |
1 | | nfv 1980 |
. . . . 5
⊢
Ⅎ𝑘𝜑 |
2 | | nfv 1980 |
. . . . . 6
⊢
Ⅎ𝑘 𝑗 ∈ 𝑍 |
3 | | nfra1 3067 |
. . . . . 6
⊢
Ⅎ𝑘∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) |
4 | 2, 3 | nfan 1965 |
. . . . 5
⊢
Ⅎ𝑘(𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
5 | 1, 4 | nfan 1965 |
. . . 4
⊢
Ⅎ𝑘(𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) |
6 | | climxrrelem.z |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) |
7 | 6 | uztrn2 11868 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
8 | 7 | adantll 752 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
9 | | climxrrelem.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
10 | 9 | fdmd 39888 |
. . . . . . . 8
⊢ (𝜑 → dom 𝐹 = 𝑍) |
11 | 10 | ad2antrr 764 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → dom 𝐹 = 𝑍) |
12 | 8, 11 | eleqtrrd 2830 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ dom 𝐹) |
13 | 12 | adantlrr 759 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ dom 𝐹) |
14 | | simpll 807 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝜑) |
15 | 8 | adantlrr 759 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
16 | | rspa 3056 |
. . . . . . . 8
⊢
((∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
17 | 16 | adantll 752 |
. . . . . . 7
⊢ (((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
18 | 17 | adantll 752 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
19 | 9 | ffvelrnda 6510 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈
ℝ*) |
20 | 19 | 3adant3 1124 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → (𝐹‘𝑘) ∈
ℝ*) |
21 | | simpll 807 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → 𝜑) |
22 | | simpr 479 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = -∞) → (𝐹‘𝑘) = -∞) |
23 | | simpl 474 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = -∞) → (𝐹‘𝑘) ∈ ℂ) |
24 | 22, 23 | eqeltrrd 2828 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = -∞) → -∞ ∈
ℂ) |
25 | 24 | adantll 752 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → -∞ ∈
ℂ) |
26 | | climxrrelem.n |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ -∞ ∈ ℂ)
→ 𝐷 ≤
(abs‘(-∞ − 𝐴))) |
27 | 21, 25, 26 | syl2anc 696 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴))) |
28 | 27 | adantlrr 759 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → 𝐷 ≤ (abs‘(-∞ − 𝐴))) |
29 | | oveq1 6808 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑘) = -∞ → ((𝐹‘𝑘) − 𝐴) = (-∞ − 𝐴)) |
30 | 29 | fveq2d 6344 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘) = -∞ → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴))) |
31 | 30 | adantl 473 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = -∞) → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(-∞ − 𝐴))) |
32 | | simpl 474 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = -∞) → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) |
33 | 31, 32 | eqbrtrrd 4816 |
. . . . . . . . . . . . 13
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = -∞) → (abs‘(-∞
− 𝐴)) < 𝐷) |
34 | 33 | adantll 752 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) ∧ (𝐹‘𝑘) = -∞) → (abs‘(-∞
− 𝐴)) < 𝐷) |
35 | 34 | adantlrl 758 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → (abs‘(-∞
− 𝐴)) < 𝐷) |
36 | | climxrrelem.c |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
37 | 6 | fvexi 6351 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑍 ∈ V |
38 | 37 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑍 ∈ V) |
39 | 9, 38 | fexd 39764 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ∈ V) |
40 | | eqidd 2749 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
41 | 39, 40 | clim 14395 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
42 | 36, 41 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
43 | 42 | simpld 477 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ ℂ) |
44 | 43 | ad2antrr 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → 𝐴 ∈ ℂ) |
45 | 25, 44 | subcld 10555 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → (-∞ − 𝐴) ∈
ℂ) |
46 | 45 | abscld 14345 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = -∞) → (abs‘(-∞
− 𝐴)) ∈
ℝ) |
47 | 46 | adantlrr 759 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → (abs‘(-∞
− 𝐴)) ∈
ℝ) |
48 | | climxrrelem.d |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈
ℝ+) |
49 | 48 | rpred 12036 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ ℝ) |
50 | 49 | ad2antrr 764 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → 𝐷 ∈ ℝ) |
51 | 47, 50 | ltnled 10347 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → ((abs‘(-∞
− 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴)))) |
52 | 35, 51 | mpbid 222 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = -∞) → ¬ 𝐷 ≤ (abs‘(-∞ − 𝐴))) |
53 | 28, 52 | pm2.65da 601 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹‘𝑘) = -∞) |
54 | 53 | 3adant2 1123 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹‘𝑘) = -∞) |
55 | 54 | neqned 2927 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → (𝐹‘𝑘) ≠ -∞) |
56 | | simpll 807 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → 𝜑) |
57 | | simpr 479 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = +∞) → (𝐹‘𝑘) = +∞) |
58 | | simpl 474 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = +∞) → (𝐹‘𝑘) ∈ ℂ) |
59 | 57, 58 | eqeltrrd 2828 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑘) = +∞) → +∞ ∈
ℂ) |
60 | 59 | adantll 752 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → +∞ ∈
ℂ) |
61 | | climxrrelem.p |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ +∞ ∈ ℂ)
→ 𝐷 ≤
(abs‘(+∞ − 𝐴))) |
62 | 56, 60, 61 | syl2anc 696 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴))) |
63 | 62 | adantlrr 759 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → 𝐷 ≤ (abs‘(+∞ − 𝐴))) |
64 | | oveq1 6808 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑘) = +∞ → ((𝐹‘𝑘) − 𝐴) = (+∞ − 𝐴)) |
65 | 64 | fveq2d 6344 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘) = +∞ → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴))) |
66 | 65 | adantl 473 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = +∞) → (abs‘((𝐹‘𝑘) − 𝐴)) = (abs‘(+∞ − 𝐴))) |
67 | | simpl 474 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = +∞) → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) |
68 | 66, 67 | eqbrtrrd 4816 |
. . . . . . . . . . . . 13
⊢
(((abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷 ∧ (𝐹‘𝑘) = +∞) → (abs‘(+∞
− 𝐴)) < 𝐷) |
69 | 68 | adantll 752 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) ∧ (𝐹‘𝑘) = +∞) → (abs‘(+∞
− 𝐴)) < 𝐷) |
70 | 69 | adantlrl 758 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → (abs‘(+∞
− 𝐴)) < 𝐷) |
71 | 43 | ad2antrr 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → 𝐴 ∈ ℂ) |
72 | 60, 71 | subcld 10555 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → (+∞ − 𝐴) ∈
ℂ) |
73 | 72 | abscld 14345 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐹‘𝑘) ∈ ℂ) ∧ (𝐹‘𝑘) = +∞) → (abs‘(+∞
− 𝐴)) ∈
ℝ) |
74 | 73 | adantlrr 759 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → (abs‘(+∞
− 𝐴)) ∈
ℝ) |
75 | 49 | ad2antrr 764 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → 𝐷 ∈ ℝ) |
76 | 74, 75 | ltnled 10347 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → ((abs‘(+∞
− 𝐴)) < 𝐷 ↔ ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴)))) |
77 | 70, 76 | mpbid 222 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) ∧ (𝐹‘𝑘) = +∞) → ¬ 𝐷 ≤ (abs‘(+∞ − 𝐴))) |
78 | 63, 77 | pm2.65da 601 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹‘𝑘) = +∞) |
79 | 78 | 3adant2 1123 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → ¬ (𝐹‘𝑘) = +∞) |
80 | 79 | neqned 2927 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → (𝐹‘𝑘) ≠ +∞) |
81 | 20, 55, 80 | xrred 40048 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) → (𝐹‘𝑘) ∈ ℝ) |
82 | 14, 15, 18, 81 | syl3anc 1463 |
. . . . 5
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℝ) |
83 | 13, 82 | jca 555 |
. . . 4
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
84 | 5, 83 | ralrimia 39783 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ)) |
85 | 9 | ffund 6198 |
. . . . 5
⊢ (𝜑 → Fun 𝐹) |
86 | | ffvresb 6545 |
. . . . 5
⊢ (Fun
𝐹 → ((𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
87 | 85, 86 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
88 | 87 | adantr 472 |
. . 3
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) → ((𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ ↔
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ ℝ))) |
89 | 84, 88 | mpbird 247 |
. 2
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
90 | | breq2 4796 |
. . . . . 6
⊢ (𝑥 = 𝐷 → ((abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
91 | 90 | anbi2d 742 |
. . . . 5
⊢ (𝑥 = 𝐷 → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) |
92 | 91 | rexralbidv 3184 |
. . . 4
⊢ (𝑥 = 𝐷 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) |
93 | 42 | simprd 482 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) |
94 | 92, 93, 48 | rspcdva 3443 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
95 | | climxrrelem.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
96 | 6 | rexuz3 14258 |
. . . 4
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) |
97 | 95, 96 | syl 17 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷))) |
98 | 94, 97 | mpbird 247 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝐷)) |
99 | 89, 98 | reximddv 3144 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |