Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxrre Structured version   Visualization version   GIF version

Theorem climxrre 40477
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxrre.m (𝜑𝑀 ∈ ℤ)
climxrre.z 𝑍 = (ℤ𝑀)
climxrre.f (𝜑𝐹:𝑍⟶ℝ*)
climxrre.a (𝜑𝐴 ∈ ℝ)
climxrre.c (𝜑𝐹𝐴)
Assertion
Ref Expression
climxrre (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem climxrre
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climxrre.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 764 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
3 climxrre.z . . . 4 𝑍 = (ℤ𝑀)
4 climxrre.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 764 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
6 climxrre.c . . . . 5 (𝜑𝐹𝐴)
76ad2antrr 764 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹𝐴)
8 simpr 479 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → +∞ ∈ ℂ)
9 climxrre.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
109recnd 10252 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1110adantr 472 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → 𝐴 ∈ ℂ)
128, 11subcld 10576 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ℂ) → (+∞ − 𝐴) ∈ ℂ)
13 renepnf 10271 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
1413necomd 2979 . . . . . . . . . 10 (𝐴 ∈ ℝ → +∞ ≠ 𝐴)
159, 14syl 17 . . . . . . . . 9 (𝜑 → +∞ ≠ 𝐴)
1615adantr 472 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → +∞ ≠ 𝐴)
178, 11, 16subne0d 10585 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ℂ) → (+∞ − 𝐴) ≠ 0)
1812, 17absrpcld 14378 . . . . . 6 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
1918adantr 472 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
20 simpr 479 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → -∞ ∈ ℂ)
2110adantr 472 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐴 ∈ ℂ)
2220, 21subcld 10576 . . . . . . 7 ((𝜑 ∧ -∞ ∈ ℂ) → (-∞ − 𝐴) ∈ ℂ)
239adantr 472 . . . . . . . . 9 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐴 ∈ ℝ)
24 renemnf 10272 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
2524necomd 2979 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ ≠ 𝐴)
2623, 25syl 17 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → -∞ ≠ 𝐴)
2720, 21, 26subne0d 10585 . . . . . . 7 ((𝜑 ∧ -∞ ∈ ℂ) → (-∞ − 𝐴) ≠ 0)
2822, 27absrpcld 14378 . . . . . 6 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
2928adantlr 753 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
3019, 29ifcld 4267 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ∈ ℝ+)
3119rpred 12057 . . . . . 6 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
3229rpred 12057 . . . . . 6 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
3331, 32min1d 40192 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(+∞ − 𝐴)))
3433adantr 472 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(+∞ − 𝐴)))
3531, 32min2d 40193 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(-∞ − 𝐴)))
3635adantr 472 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(-∞ − 𝐴)))
372, 3, 5, 7, 30, 34, 36climxrrelem 40476 . . 3 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
381ad2antrr 764 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
394ad2antrr 764 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
406ad2antrr 764 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝐹𝐴)
4118adantr 472 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
4218rpred 12057 . . . . . 6 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
4342leidd 10778 . . . . 5 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
4443ad2antrr 764 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
45 pm2.21 120 . . . . . 6 (¬ -∞ ∈ ℂ → (-∞ ∈ ℂ → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴))))
4645imp 444 . . . . 5 ((¬ -∞ ∈ ℂ ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
4746adantll 752 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
4838, 3, 39, 40, 41, 44, 47climxrrelem 40476 . . 3 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
4937, 48pm2.61dan 867 . 2 ((𝜑 ∧ +∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
501ad2antrr 764 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
514ad2antrr 764 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
526ad2antrr 764 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹𝐴)
5328adantlr 753 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
54 pm2.21 120 . . . . . 6 (¬ +∞ ∈ ℂ → (+∞ ∈ ℂ → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴))))
5554imp 444 . . . . 5 ((¬ +∞ ∈ ℂ ∧ +∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
5655ad4ant24 1210 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
5728rpred 12057 . . . . . 6 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
5857leidd 10778 . . . . 5 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
5958ad4ant13 1204 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
6050, 3, 51, 52, 53, 56, 59climxrrelem 40476 . . 3 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
61 nfv 1984 . . . . . . 7 𝑘((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ)
62 nfv 1984 . . . . . . . 8 𝑘 𝑗𝑍
63 nfra1 3071 . . . . . . . 8 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ
6462, 63nfan 1969 . . . . . . 7 𝑘(𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
6561, 64nfan 1969 . . . . . 6 𝑘(((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
66 simp-4l 825 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
673uztrn2 11889 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6867adantlr 753 . . . . . . . . 9 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6968adantll 752 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
70 simpr 479 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑘𝑍)
714fdmd 39911 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑍)
7271adantr 472 . . . . . . . . 9 ((𝜑𝑘𝑍) → dom 𝐹 = 𝑍)
7370, 72eleqtrrd 2834 . . . . . . . 8 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
7466, 69, 73syl2anc 696 . . . . . . 7 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
754ffvelrnda 6514 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
7666, 69, 75syl2anc 696 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
77 rspa 3060 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
7877adantll 752 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
7978adantll 752 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
80 simpllr 817 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ -∞ ∈ ℂ)
81 nelne2 3021 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹𝑘) ≠ -∞)
8279, 80, 81syl2anc 696 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≠ -∞)
83 simp-4r 827 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ +∞ ∈ ℂ)
84 nelne2 3021 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ ¬ +∞ ∈ ℂ) → (𝐹𝑘) ≠ +∞)
8579, 83, 84syl2anc 696 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≠ +∞)
8676, 82, 85xrred 40071 . . . . . . 7 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
8774, 86jca 555 . . . . . 6 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
8865, 87ralrimia 39806 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
894ffund 6202 . . . . . . 7 (𝜑 → Fun 𝐹)
90 ffvresb 6549 . . . . . . 7 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9189, 90syl 17 . . . . . 6 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9291ad3antrrr 768 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9388, 92mpbird 247 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
94 r19.26 3194 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1) ↔ (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 1))
9594simplbi 478 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
9695ad2antll 767 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1))) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
97 breq2 4800 . . . . . . . . . 10 (𝑥 = 1 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 1))
9897anbi2d 742 . . . . . . . . 9 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1)))
9998rexralbidv 3188 . . . . . . . 8 (𝑥 = 1 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1)))
1003fvexi 6355 . . . . . . . . . . . . 13 𝑍 ∈ V
101100a1i 11 . . . . . . . . . . . 12 (𝜑𝑍 ∈ V)
1024, 101fexd 39787 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
103 eqidd 2753 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
104102, 103clim 14416 . . . . . . . . . 10 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
1056, 104mpbid 222 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
106105simprd 482 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
107 1rp 12021 . . . . . . . . 9 1 ∈ ℝ+
108107a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
10999, 106, 108rspcdva 3447 . . . . . . 7 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1))
11096, 109reximddv 3148 . . . . . 6 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
1113rexuz3 14279 . . . . . . 7 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
1121, 111syl 17 . . . . . 6 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
113110, 112mpbird 247 . . . . 5 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
114113ad2antrr 764 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
11593, 114reximddv 3148 . . 3 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
11660, 115pm2.61dan 867 . 2 ((𝜑 ∧ ¬ +∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
11749, 116pm2.61dan 867 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wne 2924  wral 3042  wrex 3043  Vcvv 3332  ifcif 4222   class class class wbr 4796  dom cdm 5258  cres 5260  Fun wfun 6035  wf 6037  cfv 6041  (class class class)co 6805  cc 10118  cr 10119  1c1 10121  +∞cpnf 10255  -∞cmnf 10256  *cxr 10257   < clt 10258  cle 10259  cmin 10450  cz 11561  cuz 11871  +crp 12017  abscabs 14165  cli 14406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-seq 12988  df-exp 13047  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410
This theorem is referenced by:  xlimclim2  40561
  Copyright terms: Public domain W3C validator