Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxlim2 Structured version   Visualization version   GIF version

Theorem climxlim2 40492
Description: A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +∞ and -∞ could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxlim2.m (𝜑𝑀 ∈ ℤ)
climxlim2.z 𝑍 = (ℤ𝑀)
climxlim2.f (𝜑𝐹:𝑍⟶ℝ*)
climxlim2.a (𝜑𝐹𝐴)
Assertion
Ref Expression
climxlim2 (𝜑𝐹~~>*𝐴)

Proof of Theorem climxlim2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climxlim2.z . . . . . 6 𝑍 = (ℤ𝑀)
21eluzelz2 40042 . . . . 5 (𝑗𝑍𝑗 ∈ ℤ)
32ad2antlr 765 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → 𝑗 ∈ ℤ)
4 eqid 2724 . . . 4 (ℤ𝑗) = (ℤ𝑗)
5 climxlim2.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ*)
65adantr 472 . . . . . 6 ((𝜑𝑗𝑍) → 𝐹:𝑍⟶ℝ*)
71uzssd3 40068 . . . . . . 7 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
87adantl 473 . . . . . 6 ((𝜑𝑗𝑍) → (ℤ𝑗) ⊆ 𝑍)
96, 8fssresd 6184 . . . . 5 ((𝜑𝑗𝑍) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ*)
109adantr 472 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ*)
11 simpr 479 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
12 climxlim2.a . . . . . . 7 (𝜑𝐹𝐴)
1312adantr 472 . . . . . 6 ((𝜑𝑗𝑍) → 𝐹𝐴)
141fvexi 6315 . . . . . . . . 9 𝑍 ∈ V
1514a1i 11 . . . . . . . 8 (𝜑𝑍 ∈ V)
165, 15fexd 39712 . . . . . . 7 (𝜑𝐹 ∈ V)
17 climres 14426 . . . . . . 7 ((𝑗 ∈ ℤ ∧ 𝐹 ∈ V) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
182, 16, 17syl2anr 496 . . . . . 6 ((𝜑𝑗𝑍) → ((𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴𝐹𝐴))
1913, 18mpbird 247 . . . . 5 ((𝜑𝑗𝑍) → (𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴)
2019adantr 472 . . . 4 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗)) ⇝ 𝐴)
213, 4, 10, 11, 20climxlim2lem 40491 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹 ↾ (ℤ𝑗))~~>*𝐴)
221, 5fuzxrpmcn 40474 . . . . . 6 (𝜑𝐹 ∈ (ℝ*pm ℂ))
2322adantr 472 . . . . 5 ((𝜑𝑗𝑍) → 𝐹 ∈ (ℝ*pm ℂ))
242adantl 473 . . . . 5 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
2523, 24xlimres 40467 . . . 4 ((𝜑𝑗𝑍) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗))~~>*𝐴))
2625adantr 472 . . 3 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑗))~~>*𝐴))
2721, 26mpbird 247 . 2 (((𝜑𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ) → 𝐹~~>*𝐴)
28 climxlim2.m . . 3 (𝜑𝑀 ∈ ℤ)
295ffnd 6159 . . 3 (𝜑𝐹 Fn 𝑍)
30 climcl 14350 . . . . 5 (𝐹𝐴𝐴 ∈ ℂ)
3112, 30syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
32 breldmg 5437 . . . 4 ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ 𝐹𝐴) → 𝐹 ∈ dom ⇝ )
3316, 31, 12, 32syl3anc 1439 . . 3 (𝜑𝐹 ∈ dom ⇝ )
3428, 1, 29, 33climrescn 40400 . 2 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
3527, 34r19.29a 3180 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  Vcvv 3304  wss 3680   class class class wbr 4760  dom cdm 5218  cres 5220  wf 5997  cfv 6001  (class class class)co 6765  pm cpm 7975  cc 10047  *cxr 10186  cz 11490  cuz 11800  cli 14335  ~~>*clsxlim 40464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fi 8433  df-sup 8464  df-inf 8465  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-dec 11607  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ioc 12294  df-ico 12295  df-icc 12296  df-fz 12441  df-fl 12708  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-rlim 14340  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-plusg 16077  df-mulr 16078  df-starv 16079  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-rest 16206  df-topn 16207  df-topgen 16227  df-ordt 16284  df-ps 17322  df-tsr 17323  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-cnfld 19870  df-top 20822  df-topon 20839  df-topsp 20860  df-bases 20873  df-lm 21156  df-xms 22247  df-ms 22248  df-xlim 40465
This theorem is referenced by:  dfxlim2v  40493  meaiuninc3v  41121
  Copyright terms: Public domain W3C validator