Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrescn Structured version   Visualization version   GIF version

Theorem climrescn 40498
 Description: A sequence converging w.r.t. the standard topology on the complex numbers, eventually becomes a sequence of complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climrescn.m (𝜑𝑀 ∈ ℤ)
climrescn.z 𝑍 = (ℤ𝑀)
climrescn.f (𝜑𝐹 Fn 𝑍)
climrescn.c (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climrescn (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
Distinct variable groups:   𝑗,𝐹   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗)   𝑀(𝑗)

Proof of Theorem climrescn
Dummy variables 𝑖 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1995 . . . . . 6 𝑘(𝜑𝑖𝑍)
2 nfra1 3090 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)
31, 2nfan 1980 . . . . 5 𝑘((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
4 climrescn.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
54uztrn2 11906 . . . . . . . . 9 ((𝑖𝑍𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
65adantll 693 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
7 climrescn.f . . . . . . . . . 10 (𝜑𝐹 Fn 𝑍)
87fndmd 39959 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝑍)
98ad2antrr 705 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → dom 𝐹 = 𝑍)
106, 9eleqtrrd 2853 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘 ∈ dom 𝐹)
1110adantlr 694 . . . . . 6 ((((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘 ∈ dom 𝐹)
12 rspa 3079 . . . . . . . . 9 ((∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
1312adantll 693 . . . . . . . 8 (((𝑖𝑍 ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
1413simpld 482 . . . . . . 7 (((𝑖𝑍 ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) ∈ ℂ)
1514adantlll 697 . . . . . 6 ((((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) ∈ ℂ)
1611, 15jca 501 . . . . 5 ((((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ))
173, 16ralrimia 39836 . . . 4 (((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) → ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ))
18 fnfun 6128 . . . . . 6 (𝐹 Fn 𝑍 → Fun 𝐹)
19 ffvresb 6536 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ)))
207, 18, 193syl 18 . . . . 5 (𝜑 → ((𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ)))
2120ad2antrr 705 . . . 4 (((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) → ((𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ)))
2217, 21mpbird 247 . . 3 (((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) → (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ)
23 breq2 4790 . . . . . . 7 (𝑥 = 1 → ((abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥 ↔ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
2423anbi2d 614 . . . . . 6 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
2524rexralbidv 3206 . . . . 5 (𝑥 = 1 → (∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥) ↔ ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
26 climrescn.c . . . . . . . 8 (𝜑𝐹 ∈ dom ⇝ )
27 climdm 14493 . . . . . . . 8 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
2826, 27sylib 208 . . . . . . 7 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
29 eqidd 2772 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
3026, 29clim 14433 . . . . . . 7 (𝜑 → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ (( ⇝ ‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥))))
3128, 30mpbid 222 . . . . . 6 (𝜑 → (( ⇝ ‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥)))
3231simprd 483 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥))
33 1rp 12039 . . . . . 6 1 ∈ ℝ+
3433a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ+)
3525, 32, 34rspcdva 3466 . . . 4 (𝜑 → ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
36 climrescn.m . . . . 5 (𝜑𝑀 ∈ ℤ)
374rexuz3 14296 . . . . 5 (𝑀 ∈ ℤ → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1) ↔ ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
3836, 37syl 17 . . . 4 (𝜑 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1) ↔ ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
3935, 38mpbird 247 . . 3 (𝜑 → ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
4022, 39reximddv3 39863 . 2 (𝜑 → ∃𝑖𝑍 (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ)
41 fveq2 6332 . . . . 5 (𝑗 = 𝑖 → (ℤ𝑗) = (ℤ𝑖))
4241reseq2d 5534 . . . 4 (𝑗 = 𝑖 → (𝐹 ↾ (ℤ𝑗)) = (𝐹 ↾ (ℤ𝑖)))
4342, 41feq12d 6173 . . 3 (𝑗 = 𝑖 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ ↔ (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ))
4443cbvrexv 3321 . 2 (∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ ↔ ∃𝑖𝑍 (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ)
4540, 44sylibr 224 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∀wral 3061  ∃wrex 3062   class class class wbr 4786  dom cdm 5249   ↾ cres 5251  Fun wfun 6025   Fn wfn 6026  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793  ℂcc 10136  1c1 10139   < clt 10276   − cmin 10468  ℤcz 11579  ℤ≥cuz 11888  ℝ+crp 12035  abscabs 14182   ⇝ cli 14423 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427 This theorem is referenced by:  climxlim2  40590
 Copyright terms: Public domain W3C validator