![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climrel | Structured version Visualization version GIF version |
Description: The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climrel | ⊢ Rel ⇝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clim 14263 | . 2 ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} | |
2 | 1 | relopabi 5278 | 1 ⊢ Rel ⇝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 class class class wbr 4685 Rel wrel 5148 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 < clt 10112 − cmin 10304 ℤcz 11415 ℤ≥cuz 11725 ℝ+crp 11870 abscabs 14018 ⇝ cli 14259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-opab 4746 df-xp 5149 df-rel 5150 df-clim 14263 |
This theorem is referenced by: clim 14269 climcl 14274 climi 14285 climrlim2 14322 fclim 14328 climrecl 14358 climge0 14359 iserex 14431 caurcvg2 14452 caucvg 14453 iseralt 14459 fsumcvg3 14504 cvgcmpce 14594 climfsum 14596 climcnds 14627 trirecip 14639 ntrivcvgn0 14674 ovoliunlem1 23316 mbflimlem 23479 abelthlem5 24234 emcllem6 24772 lgamgulmlem4 24803 binomcxplemnn0 38865 binomcxplemnotnn0 38872 climf 40172 sumnnodd 40180 climf2 40216 climd 40222 clim2d 40223 climfv 40241 climuzlem 40293 climlimsup 40310 climlimsupcex 40319 climliminflimsupd 40351 climliminf 40356 liminflimsupclim 40357 ioodvbdlimc1lem2 40465 ioodvbdlimc2lem 40467 stirlinglem12 40620 fouriersw 40766 |
Copyright terms: Public domain | W3C validator |