![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climrecf | Structured version Visualization version GIF version |
Description: A version of climrec 40153 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
climrecf.1 | ⊢ Ⅎ𝑘𝜑 |
climrecf.2 | ⊢ Ⅎ𝑘𝐺 |
climrecf.3 | ⊢ Ⅎ𝑘𝐻 |
climrecf.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climrecf.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climrecf.6 | ⊢ (𝜑 → 𝐺 ⇝ 𝐴) |
climrecf.7 | ⊢ (𝜑 → 𝐴 ≠ 0) |
climrecf.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) |
climrecf.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) |
climrecf.10 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
Ref | Expression |
---|---|
climrecf | ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrecf.4 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climrecf.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climrecf.6 | . 2 ⊢ (𝜑 → 𝐺 ⇝ 𝐴) | |
4 | climrecf.7 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
5 | climrecf.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
6 | nfv 1883 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
7 | 5, 6 | nfan 1868 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
8 | climrecf.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐺 | |
9 | nfcv 2793 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
10 | 8, 9 | nffv 6236 | . . . . 5 ⊢ Ⅎ𝑘(𝐺‘𝑗) |
11 | 10 | nfel1 2808 | . . . 4 ⊢ Ⅎ𝑘(𝐺‘𝑗) ∈ (ℂ ∖ {0}) |
12 | 7, 11 | nfim 1865 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})) |
13 | eleq1 2718 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
14 | 13 | anbi2d 740 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
15 | fveq2 6229 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐺‘𝑘) = (𝐺‘𝑗)) | |
16 | 15 | eleq1d 2715 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐺‘𝑘) ∈ (ℂ ∖ {0}) ↔ (𝐺‘𝑗) ∈ (ℂ ∖ {0}))) |
17 | 14, 16 | imbi12d 333 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})))) |
18 | climrecf.8 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ (ℂ ∖ {0})) | |
19 | 12, 17, 18 | chvar 2298 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ∈ (ℂ ∖ {0})) |
20 | climrecf.3 | . . . . . 6 ⊢ Ⅎ𝑘𝐻 | |
21 | 20, 9 | nffv 6236 | . . . . 5 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
22 | nfcv 2793 | . . . . . 6 ⊢ Ⅎ𝑘1 | |
23 | nfcv 2793 | . . . . . 6 ⊢ Ⅎ𝑘 / | |
24 | 22, 23, 10 | nfov 6716 | . . . . 5 ⊢ Ⅎ𝑘(1 / (𝐺‘𝑗)) |
25 | 21, 24 | nfeq 2805 | . . . 4 ⊢ Ⅎ𝑘(𝐻‘𝑗) = (1 / (𝐺‘𝑗)) |
26 | 7, 25 | nfim 1865 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))) |
27 | fveq2 6229 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
28 | 15 | oveq2d 6706 | . . . . 5 ⊢ (𝑘 = 𝑗 → (1 / (𝐺‘𝑘)) = (1 / (𝐺‘𝑗))) |
29 | 27, 28 | eqeq12d 2666 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = (1 / (𝐺‘𝑘)) ↔ (𝐻‘𝑗) = (1 / (𝐺‘𝑗)))) |
30 | 14, 29 | imbi12d 333 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))))) |
31 | climrecf.9 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (1 / (𝐺‘𝑘))) | |
32 | 26, 30, 31 | chvar 2298 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (1 / (𝐺‘𝑗))) |
33 | climrecf.10 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
34 | 1, 2, 3, 4, 19, 32, 33 | climrec 40153 | 1 ⊢ (𝜑 → 𝐻 ⇝ (1 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 Ⅎwnfc 2780 ≠ wne 2823 ∖ cdif 3604 {csn 4210 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 0cc0 9974 1c1 9975 / cdiv 10722 ℤcz 11415 ℤ≥cuz 11725 ⇝ cli 14259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 |
This theorem is referenced by: climdivf 40162 |
Copyright terms: Public domain | W3C validator |