Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrec Structured version   Visualization version   GIF version

Theorem climrec 40338
Description: Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrec.1 𝑍 = (ℤ𝑀)
climrec.2 (𝜑𝑀 ∈ ℤ)
climrec.3 (𝜑𝐺𝐴)
climrec.4 (𝜑𝐴 ≠ 0)
climrec.5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
climrec.6 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
climrec.7 (𝜑𝐻𝑊)
Assertion
Ref Expression
climrec (𝜑𝐻 ⇝ (1 / 𝐴))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝐻   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑊(𝑘)

Proof of Theorem climrec
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrec.1 . . 3 𝑍 = (ℤ𝑀)
2 climrec.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climrec.3 . . . . 5 (𝜑𝐺𝐴)
4 climcl 14429 . . . . 5 (𝐺𝐴𝐴 ∈ ℂ)
53, 4syl 17 . . . 4 (𝜑𝐴 ∈ ℂ)
6 climrec.4 . . . . . 6 (𝜑𝐴 ≠ 0)
76neneqd 2937 . . . . 5 (𝜑 → ¬ 𝐴 = 0)
8 c0ex 10226 . . . . . 6 0 ∈ V
98elsn2 4356 . . . . 5 (𝐴 ∈ {0} ↔ 𝐴 = 0)
107, 9sylnibr 318 . . . 4 (𝜑 → ¬ 𝐴 ∈ {0})
115, 10eldifd 3726 . . 3 (𝜑𝐴 ∈ (ℂ ∖ {0}))
12 eqidd 2761 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
13 simpr 479 . . . . . 6 (((𝜑𝑧 ∈ (ℂ ∖ {0})) ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
1413oveq2d 6829 . . . . 5 (((𝜑𝑧 ∈ (ℂ ∖ {0})) ∧ 𝑤 = 𝑧) → (1 / 𝑤) = (1 / 𝑧))
15 simpr 479 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ∈ (ℂ ∖ {0}))
1615eldifad 3727 . . . . . 6 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ∈ ℂ)
17 eldifsni 4466 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
1817adantl 473 . . . . . 6 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → 𝑧 ≠ 0)
1916, 18reccld 10986 . . . . 5 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → (1 / 𝑧) ∈ ℂ)
2012, 14, 15, 19fvmptd 6450 . . . 4 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
2120, 19eqeltrd 2839 . . 3 ((𝜑𝑧 ∈ (ℂ ∖ {0})) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) ∈ ℂ)
22 climrec.7 . . 3 (𝜑𝐻𝑊)
23 eqid 2760 . . . . . 6 (if(1 ≤ ((abs‘𝐴) · 𝑥), 1, ((abs‘𝐴) · 𝑥)) · ((abs‘𝐴) / 2)) = (if(1 ≤ ((abs‘𝐴) · 𝑥), 1, ((abs‘𝐴) · 𝑥)) · ((abs‘𝐴) / 2))
2423reccn2 14526 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))
2511, 24sylan 489 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))
26 eqidd 2761 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
27 simpr 479 . . . . . . . . . . . . 13 ((𝑧 ∈ (ℂ ∖ {0}) ∧ 𝑤 = 𝑧) → 𝑤 = 𝑧)
2827oveq2d 6829 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ∧ 𝑤 = 𝑧) → (1 / 𝑤) = (1 / 𝑧))
29 id 22 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ (ℂ ∖ {0}))
30 eldifi 3875 . . . . . . . . . . . . 13 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ∈ ℂ)
3130, 17reccld 10986 . . . . . . . . . . . 12 (𝑧 ∈ (ℂ ∖ {0}) → (1 / 𝑧) ∈ ℂ)
3226, 28, 29, 31fvmptd 6450 . . . . . . . . . . 11 (𝑧 ∈ (ℂ ∖ {0}) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
3332ad2antlr 765 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) = (1 / 𝑧))
34 eqidd 2761 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
35 simpr 479 . . . . . . . . . . . . 13 ((𝜑𝑤 = 𝐴) → 𝑤 = 𝐴)
3635oveq2d 6829 . . . . . . . . . . . 12 ((𝜑𝑤 = 𝐴) → (1 / 𝑤) = (1 / 𝐴))
375, 6reccld 10986 . . . . . . . . . . . 12 (𝜑 → (1 / 𝐴) ∈ ℂ)
3834, 36, 11, 37fvmptd 6450 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴) = (1 / 𝐴))
3938ad4antr 771 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴) = (1 / 𝐴))
4033, 39oveq12d 6831 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴)) = ((1 / 𝑧) − (1 / 𝐴)))
4140fveq2d 6356 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4229ad2antlr 765 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → 𝑧 ∈ (ℂ ∖ {0}))
43 simpr 479 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(𝑧𝐴)) < 𝑦)
44 simpllr 817 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)))
4542, 43, 44mp2d 49 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)
4641, 45eqbrtrd 4826 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥))) ∧ 𝑧 ∈ (ℂ ∖ {0})) ∧ (abs‘(𝑧𝐴)) < 𝑦) → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)
4746exp41 639 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥)) → (𝑧 ∈ (ℂ ∖ {0}) → ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥))))
4847ralimdv2 3099 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥) → ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)))
4948reximdv 3154 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝑥) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥)))
5025, 49mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘(((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝑧) − ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))) < 𝑥))
51 climrec.5 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))
52 climrec.6 . . . 4 ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))
53 eqidd 2761 . . . . 5 ((𝜑𝑘𝑍) → (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)) = (𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤)))
54 oveq2 6821 . . . . . 6 (𝑤 = (𝐺𝑘) → (1 / 𝑤) = (1 / (𝐺𝑘)))
5554adantl 473 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑤 = (𝐺𝑘)) → (1 / 𝑤) = (1 / (𝐺𝑘)))
5651eldifad 3727 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
57 eldifsni 4466 . . . . . . 7 ((𝐺𝑘) ∈ (ℂ ∖ {0}) → (𝐺𝑘) ≠ 0)
5851, 57syl 17 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) ≠ 0)
5956, 58reccld 10986 . . . . 5 ((𝜑𝑘𝑍) → (1 / (𝐺𝑘)) ∈ ℂ)
6053, 55, 51, 59fvmptd 6450 . . . 4 ((𝜑𝑘𝑍) → ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘(𝐺𝑘)) = (1 / (𝐺𝑘)))
6152, 60eqtr4d 2797 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘(𝐺𝑘)))
621, 2, 11, 21, 3, 22, 50, 51, 61climcn1 14521 . 2 (𝜑𝐻 ⇝ ((𝑤 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑤))‘𝐴))
6362, 38breqtrd 4830 1 (𝜑𝐻 ⇝ (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  cdif 3712  ifcif 4230  {csn 4321   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   · cmul 10133   < clt 10266  cle 10267  cmin 10458   / cdiv 10876  2c2 11262  cz 11569  cuz 11879  +crp 12025  abscabs 14173  cli 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418
This theorem is referenced by:  climrecf  40344  wallispi  40790
  Copyright terms: Public domain W3C validator