Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climmulf Structured version   Visualization version   GIF version

Theorem climmulf 40154
Description: A version of climmul 14407 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climmulf.1 𝑘𝜑
climmulf.2 𝑘𝐹
climmulf.3 𝑘𝐺
climmulf.4 𝑘𝐻
climmulf.5 𝑍 = (ℤ𝑀)
climmulf.6 (𝜑𝑀 ∈ ℤ)
climmulf.7 (𝜑𝐹𝐴)
climmulf.8 (𝜑𝐻𝑋)
climmulf.9 (𝜑𝐺𝐵)
climmulf.10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climmulf.11 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climmulf.12 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
Assertion
Ref Expression
climmulf (𝜑𝐻 ⇝ (𝐴 · 𝐵))
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑋(𝑘)

Proof of Theorem climmulf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climmulf.5 . 2 𝑍 = (ℤ𝑀)
2 climmulf.6 . 2 (𝜑𝑀 ∈ ℤ)
3 climmulf.7 . 2 (𝜑𝐹𝐴)
4 climmulf.8 . 2 (𝜑𝐻𝑋)
5 climmulf.9 . 2 (𝜑𝐺𝐵)
6 climmulf.1 . . . . 5 𝑘𝜑
7 nfcv 2793 . . . . . 6 𝑘𝑗
87nfel1 2808 . . . . 5 𝑘 𝑗𝑍
96, 8nfan 1868 . . . 4 𝑘(𝜑𝑗𝑍)
10 climmulf.2 . . . . . 6 𝑘𝐹
1110, 7nffv 6236 . . . . 5 𝑘(𝐹𝑗)
1211nfel1 2808 . . . 4 𝑘(𝐹𝑗) ∈ ℂ
139, 12nfim 1865 . . 3 𝑘((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
14 eleq1 2718 . . . . 5 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
1514anbi2d 740 . . . 4 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
16 fveq2 6229 . . . . 5 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1716eleq1d 2715 . . . 4 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1815, 17imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)))
19 climmulf.10 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2013, 18, 19chvar 2298 . 2 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℂ)
21 climmulf.3 . . . . . 6 𝑘𝐺
2221, 7nffv 6236 . . . . 5 𝑘(𝐺𝑗)
2322nfel1 2808 . . . 4 𝑘(𝐺𝑗) ∈ ℂ
249, 23nfim 1865 . . 3 𝑘((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
25 fveq2 6229 . . . . 5 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
2625eleq1d 2715 . . . 4 (𝑘 = 𝑗 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑗) ∈ ℂ))
2715, 26imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)))
28 climmulf.11 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2924, 27, 28chvar 2298 . 2 ((𝜑𝑗𝑍) → (𝐺𝑗) ∈ ℂ)
30 climmulf.4 . . . . . 6 𝑘𝐻
3130, 7nffv 6236 . . . . 5 𝑘(𝐻𝑗)
32 nfcv 2793 . . . . . 6 𝑘 ·
3311, 32, 22nfov 6716 . . . . 5 𝑘((𝐹𝑗) · (𝐺𝑗))
3431, 33nfeq 2805 . . . 4 𝑘(𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗))
359, 34nfim 1865 . . 3 𝑘((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))
36 fveq2 6229 . . . . 5 (𝑘 = 𝑗 → (𝐻𝑘) = (𝐻𝑗))
3716, 25oveq12d 6708 . . . . 5 (𝑘 = 𝑗 → ((𝐹𝑘) · (𝐺𝑘)) = ((𝐹𝑗) · (𝐺𝑗)))
3836, 37eqeq12d 2666 . . . 4 (𝑘 = 𝑗 → ((𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)) ↔ (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗))))
3915, 38imbi12d 333 . . 3 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘))) ↔ ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))))
40 climmulf.12 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))
4135, 39, 40chvar 2298 . 2 ((𝜑𝑗𝑍) → (𝐻𝑗) = ((𝐹𝑗) · (𝐺𝑗)))
421, 2, 3, 4, 5, 20, 29, 41climmul 14407 1 (𝜑𝐻 ⇝ (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wnf 1748  wcel 2030  wnfc 2780   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972   · cmul 9979  cz 11415  cuz 11725  cli 14259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263
This theorem is referenced by:  climneg  40160  climdivf  40162  stirlinglem15  40623  etransclem48  40817
  Copyright terms: Public domain W3C validator