Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climliminflimsup2 Structured version   Visualization version   GIF version

Theorem climliminflimsup2 40359
Description: A sequence of real numbers converges if and only if its superior limit is real and it is less than or equal to its inferior limit (in such a case, they are actually equal, see liminfgelimsupuz 40338). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climliminflimsup2.1 (𝜑𝑀 ∈ ℤ)
climliminflimsup2.2 𝑍 = (ℤ𝑀)
climliminflimsup2.3 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
climliminflimsup2 (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))

Proof of Theorem climliminflimsup2
StepHypRef Expression
1 climliminflimsup2.1 . . 3 (𝜑𝑀 ∈ ℤ)
2 climliminflimsup2.2 . . 3 𝑍 = (ℤ𝑀)
3 climliminflimsup2.3 . . 3 (𝜑𝐹:𝑍⟶ℝ)
41, 2, 3climliminflimsup 40358 . 2 (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))
51adantr 480 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝑀 ∈ ℤ)
63adantr 480 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝐹:𝑍⟶ℝ)
7 simprl 809 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) ∈ ℝ)
8 simprr 811 . . . . . . 7 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
95, 2, 6, 7, 8liminflimsupclim 40357 . . . . . 6 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝐹 ∈ dom ⇝ )
101adantr 480 . . . . . . . 8 ((𝜑𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
113adantr 480 . . . . . . . 8 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹:𝑍⟶ℝ)
12 simpr 476 . . . . . . . 8 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
1310, 2, 11, 12climliminflimsupd 40351 . . . . . . 7 ((𝜑𝐹 ∈ dom ⇝ ) → (lim inf‘𝐹) = (lim sup‘𝐹))
1413eqcomd 2657 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → (lim sup‘𝐹) = (lim inf‘𝐹))
159, 14syldan 486 . . . . 5 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) = (lim inf‘𝐹))
1615, 7eqeltrd 2730 . . . 4 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ∈ ℝ)
1716, 8jca 553 . . 3 ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))
18 simpr 476 . . . . . . 7 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
191adantr 480 . . . . . . . 8 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → 𝑀 ∈ ℤ)
203adantr 480 . . . . . . . 8 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → 𝐹:𝑍⟶ℝ)
2119, 2, 20liminfgelimsupuz 40338 . . . . . . 7 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))
2218, 21mpbid 222 . . . . . 6 ((𝜑 ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) → (lim inf‘𝐹) = (lim sup‘𝐹))
2322adantrl 752 . . . . 5 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) = (lim sup‘𝐹))
24 simprl 809 . . . . 5 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ∈ ℝ)
2523, 24eqeltrd 2730 . . . 4 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) ∈ ℝ)
26 simprr 811 . . . 4 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
2725, 26jca 553 . . 3 ((𝜑 ∧ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))
2817, 27impbida 895 . 2 (𝜑 → (((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)) ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))
294, 28bitrd 268 1 (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030   class class class wbr 4685  dom cdm 5143  wf 5922  cfv 5926  cr 9973  cle 10113  cz 11415  cuz 11725  lim supclsp 14245  cli 14259  lim infclsi 40301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-ioo 12217  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-ceil 12634  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-liminf 40302
This theorem is referenced by:  climliminflimsup4  40361
  Copyright terms: Public domain W3C validator